12.2 第4课时 “斜边、直角边”

12.2 第4课时 “斜边、直角边”

ID:37408376

大小:1.35 MB

页数:29页

时间:2019-05-11

12.2 第4课时  “斜边、直角边”_第1页
12.2 第4课时  “斜边、直角边”_第2页
12.2 第4课时  “斜边、直角边”_第3页
12.2 第4课时  “斜边、直角边”_第4页
12.2 第4课时  “斜边、直角边”_第5页
资源描述:

《12.2 第4课时 “斜边、直角边”》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.2三角全等形的判定第十二章全等三角形导入新课讲授新课当堂练习课堂小结第4课时“斜边、直角边”八年级数学上(RJ)情境引入学习目标1.探索并理解直角三角形全等的判定方法“HL”.(难点)2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.(重点)SSSSASASAAAS旧知回顾:我们学过的判定三角形全等的方法导入新课如图,Rt△ABC中,∠C=90°,直角边是_____、_____,斜边是______.CBAACBCAB思考:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?ABCA′B′C′1.两个直角三角形中,斜边

2、和一个锐角对应相等,这两个直角三角形全等吗?为什么?2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三角形全等吗?为什么?3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等吗?为什么?口答:动脑想一想如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF吗?我们知道,证明三角形全等不存在SSA定理.ABCDEF问题:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?ABCDEF直角三角形全等的判定(“斜边、直角边”定理)一讲授新课任意画出一个Rt△

3、ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们能重合吗?ABC作图探究画图方法视频画图思路(1)先画∠MC′N=90°ABCMC′N画图思路(2)在射线C′M上截取B′C′=BCMC′ABCNB′MC′画图思路(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′MC′ABCNB′A′画图思路(4)连接A′B′MC′ABCNB′A′思考:通过上面的探究,你能得出什么结论?知识要点“斜边、直角边”判定方法文字语言:斜边和一条直角边

4、对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:ABCA′B′C′在Rt△ABC和Rt△A′B′C′中,∴Rt△ABC≌Rt△A′B′C′(HL).“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.AB=A′B′,BC=B′C′,判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应

5、相等.()HL×SASAASAAS判一判典例精析例1如图,AC⊥BC,BD⊥AD,AC﹦BD,求证:BC﹦AD.证明:∵AC⊥BC,BD⊥AD,∴∠C与∠D都是直角.AB=BA,AC=BD.在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL).∴BC﹦AD.ABDC应用“HL”的前提条件是在直角三角形中.这是应用“HL”判定方法的书写格式.利用全等证明两条线段相等,这是常见的思路.变式1:如图,∠ACB=∠ADB=90,要证明△ABC≌△BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(

6、1)()(2)()(3)()(4)()ABDCAD=BC∠DAB=∠CBABD=AC∠DBA=∠CABHLHLAASAAS如图,AC、BD相交于点P,AC⊥BC,BD⊥AD,垂足分别为C、D,AD=BC.求证:AC=BD.变式2HLAC=BDRt△ABD≌Rt△BAC如图:AB⊥AD,CD⊥BC,AB=CD,判断AD和BC的位置关系.变式3HL∠ADB=∠CBDRt△ABD≌Rt△CDBAD∥BC例2如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.证明:∵AD,AF分别是两个钝角△ABC

7、和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?解:在Rt△ABC和Rt△DEF中,BC

8、=EF,AC=DF.∴Rt△ABC≌Rt△DEF(HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.DA当堂练习1.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。