2.7有理数的乘法(二)教学设计

2.7有理数的乘法(二)教学设计

ID:37353262

大小:59.50 KB

页数:5页

时间:2019-05-22

2.7有理数的乘法(二)教学设计_第1页
2.7有理数的乘法(二)教学设计_第2页
2.7有理数的乘法(二)教学设计_第3页
2.7有理数的乘法(二)教学设计_第4页
2.7有理数的乘法(二)教学设计_第5页
资源描述:

《2.7有理数的乘法(二)教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章有理数及其运算7.有理数的乘法(二)一、教学目标:1、经历探索有理数的乘法运算律的过程,发展观察、归纳、猜想、验证等能力。2、学会运用乘法运算律简化计算的方法,并会用文字语言和符号语言表述乘法运算律。3、在合作学习过程中,发展合作能力和交流能力。二、教学重难点重点:乘法的符号法则和乘法的运算律难点:积的符号的确定三、教学方法诱思探究式教学法四、教学工具多媒体等现代教学手段五、教学过程设计本节课设计了六个环节:第一环节:创设问题,情景导入;第二环节:符号表达,知识升华;第三环节:整体感知,双边互动;第四环节:课堂小结,知识归纳;第五环节:

2、布置作业,课外延伸。第一环节:创设问题,情景导入活动1(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算结果:□×○和○×□,有什么发现?(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算结果:(□×○)×◇和□×(○×◇),又有什么发现?(3)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算结果:□×(○+◇)和□×○+□×◇),又有什么发现?(4)通过计算积的比较,猜想乘法运算律在有理数范围内是否适用。活动2(1)有理数加法法则和乘法法则各

3、是什么?(2)如何进行有理数乘法运算?乘法运算符号如何规定?(3)在小学学过哪些运算律?活动目的:活动1问题(1)中的材料,与学生以前知识有关,容易吸引学生的学习注意力。问题(2)、问题(3)紧接着问题(1),让学生进行讨论。复习巩固有理数的乘法法则,训练学生的运算技能,通过比较结果,探究猜想乘法交换律、结合律、分配律在有理数范围内使用的结论,从而引入本节课的课题:乘法运算律在有理数运算中的应用。在前三个问题的基础上,设计活动2的主要目的是引导学生认识学习进行猜想并归纳,培养学生的数学交流水平和简单的抽象建模能力。活动的注意事项:在以上的活动

4、中,学生在计算过程中肯定会有一些错误,教师应事先有所预料,可采取分组竞赛的方式进行活动以激发兴趣和提高运算准确性和述度,同时教师应有针对性的巡视,对有困难的学生加以指导和帮助,并对学生的表现给出正面评价。学生经过正确计算后,自然会发现计算结果分别相等。此时,教师应出示相等的算式,最好用投影展示:□×○=○×□,(□×○)×◇=□×(○×◇),□×(○+◇)=□×○+□×◇)这样便于学生观察猜想,乘法的运算律在有理数范围内适用。在活动中让学生分组讨论,思考,交流后回答问题。第二环节:符号表达,知识升华活动3(1)用投影片展示一组等式,请同学们判

5、定等式成立的依据是哪条运算律,并口述对应运算律的内容。下列等式成立吗?为什么?(1)(-765)×4=4×(-765);(2)[7×(-8)]3=7×[(-8)×3];(3)(-5)×[1/2+(-1/3)]=(-5)×1/2+(-5)×(-1/3).(2)思考:如何用字母来表示乘法运算律。有理数乘法的交换律:ab=ba有理数乘法的结合律:(ab)c=a(bc)有理数乘法的分配律:a(b+c)=ab+ac活动目的:这个环节的设计目的,一方面是让学生在具体等式中熟悉运算律,并再一次叙述运算律的内容,从而加深印象,明确应用;另一方面是让学生用符号

6、语言来表达运算律。事实上,运算律是经过对具体算式的探索,猜想发现的一般化的表示形式,它有多种表达方法(文字语言、符号语言、图形语言),其中符号语言方法,更能简捷深刻地揭示问题的共性,有助于对一般问题的认识,而且为数学交流提供了有效途径,特别能有效地发展学生的符号感及运用符号解决问题的能力,进行推理判断的能力。活动的注意事项:运算律的文字语言叙述一般问题不大,而符号语言的表达学生会有困难,教师应有充分的预见性,并切实帮助学生正确的得到运算律的符号表达,至于学生采用那些字母,是否小写等等问题,教师不应求全责备,只要正确,就要鼓励,最后教师可将结论

7、统一,用投影片展示规范的符号表达。学生在表述出现语言障碍,教师应设法给予帮助,但主要应由学生通过回忆、讨论、交流、修正、补充自己完成,而不能由教师代替。实践证明,只要相信学生,并适当引导,学生是能够完成任务的。学生独立完成例题,教师给予明确答复:有理数相乘时,积的符号由因数中负因数的个数决定,“奇负偶正”第三环节:整体感知,双边互动活动4分组讨论,得出结论,有理数乘法仍满足交换律,结合律和分配律。(出示例题)例1计算:(1)(-0.25)×(-)×(-4)(2)(-8)×(-6)×(-0.5)×例2计算(-24)×(-++)例3,计算:⑴(-

8、5÷6+3÷8)×(-24)            ⑵ (-7)×(-4÷3)×5÷14用两种方法计算,并比较哪种方法较简便。讨论:积的符号与因数中负因数的个数的关

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。