资源描述:
《偏微分方程数值解双曲型》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit©§ê{1Ü©V.§©{í°J¥I/Æ(®)•First•Prev•Next•Last•GoBack•FullScreen•Close•QuitÏLÙÆS,UïáÚ5V.©§½)¯K©ª,¿UÙö©Ûª½5ÚÂñ5.)õ ªnØ©Û9ÙA^¯K.SN©¤3Ü©15V.§©ª25V.§
2、©ª35V.§©ª•First•Prev•Next•Last•GoBack•FullScreen•Close•QuitÚó3cüÙ,·?Ø5ý.Ú
3、Ô.©§½)¯Kê{,Ñ©ª¢^d©ÛÚ©Ûóä.ÙUYïÄ,a©§—V.§ê){.cØÓ,ùa§k¢A½A¡,§)k6«.3ïÄ¥Ñy#¯KÚ#)ûY.Ï5©§ok¢A,¤±r§8V.§¥,§/ª,{ü,´5äk½;.¿Â.e¡·ÒUì§,§
4、Ú§^S5?ØV.§½)¯Kê){.•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit1.V.©§©ª1.1ïÄé:~Xê5V.§Ð¯K1.2©ª(Ê«)(1)%ªÚ¥%ª(n«)(2)CFL^ÚªÂñ5(3)½5©Û
5、(4)AE©ª(ü«)(5).ª•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit1.35§Ð>¯K©ª(1)Ûª%ª(2)Wendroffª1.4CXê5V.§©ª•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit1.1ïÄé:5V.§Ð¯K∂u∂u+a=0,0≤t≤T,x∈I∂t∂x(1.1)u(x,0)=φ(x),x∈I,ùpa6=0´~ê.I=[0,+∞)½öI=R.§),Ò´¼êu=u(x,t),Ù½Âx−t²¡.•First•P
6、rev•Next•Last•GoBack•FullScreen•Close•Quit3UY©ªEc,·Äke(1.1))u(x,t)÷x−t²¡þx−at=CCz¹:du∂u∂udx∂u∂u=+=+a=0.dt∂t∂xdt∂t∂x=)u(x,t)÷x−at=C~ê.x−at=C(1.1)«§A•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit3x−t²¡þ?:(x0,t0),LT:Ax−at=C,@oC=x0−at0,AЩt=0:(C,0)=(x0−at0,0).dÓ,Ï)÷A~ê,¤±u(x
7、0,t0)=u(x0−at0,0)=φ(x0−at0).d:(x0,t0)?¿5u(x,t)=φ(x−at)ҴЯK(1.1)).•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit6«::(x0−at0,0))u(x,t)3:(x0,t0)6«.K«:x−at=x1Щ:(x1,0)K«.•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit1.2©ª«¿©UÝ/?1,mÚτ,mÚh,!:(xj,tk)=(jh,kτ){P(j,k).(1)%ªÚ¥%ª(n«)
8、ħ∂u∂u+a=0∂t∂x^cûOm;^ ,cÚ¥%û©OOm,•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit@o·±Xen«©ªuk+1−ukuk−ukjjjj−1+a=0,(1.2)τhuk+1−ukuk−ukjjj+1j+a=0,(1.3)τhuk+1−ukuk−ukjjj+1j−1+a=0,(1.4)τ2hj=0,±1,±2···,k=0,1,2,···Nτ(1.2)—–%ª(1.3)—–m%ª(1.4)—–¥%ª•First•Prev•Next•Last•GoBack•FullScreen•C
9、lose•Quitïᩪ ,·X?Øùn«ª¢^d—-N,ÂñÚ½5.
10、^TaylorÐmª,·éN´:cü«%ªÛÜäØO(τ+h),1n«¥%ªÛÜäØO(τ+h2),=ùn«ª©§Ñ´N.•First•Prev•Next•Last•GoBack•FullScreen•Close•Quit(2)CFL^ÚªÂñ5·XªÂñ5,¿0#óä—-Âñ5¤á7^————————————————————CFL^:©ª6«¹©§6«.————————————————————-•First•Prev•Next•Last•GoBack•