欢迎来到天天文库
浏览记录
ID:37324554
大小:448.09 KB
页数:37页
时间:2019-05-21
《Malliavin分析在随机偏微分方程中的应用英文版DavidNualart》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ApplicationofMalliavinCalculustoStochasticPartialDifferentialEquationsDavidNualart1IntroductionTheaimofthesenotesistoprovideanintroductiontotheMalliavincalculusanditsapplicationtotheregularityofthesolutionsofaclassofstochasticpartialdifferentialequations.TheMalliavincalculusisadifferentialcalculusonaG
2、aussianspacewhichhasbeendevelopedfromtheprobabilisticproofbyMalliavinofH¨ormander’shypoellipticitytheorem(see[8]).InthenextsectionwepresentanintroductiontotheMalliavincalculus,andwederivethemainpropertiesofthederivativeanddivergenceoperators.Section3isdevotedtoestablishthemaincriteriafortheexistenc
3、eandregularityofdensityforarandomvariableinaGaussianspace.ThelasttwosectionsaredevotedtodiscusstheapplicationsoftheMalli-avincalculustostochasticpartialdifferentialequations.Firstweconsideraone-dimensionalheatequationdrivenbyaspace-timewhitenoiseonthetimeinterval[0,1]withDirichletboundaryconditions,
4、andweshowthatforany(t,x)∈(0,∞)×(0,1),thesolutionu(t,x)hasaninfinitelydifferen-tiabledensityifthecoefficientsaresmoothandthediffusioncoefficientisboundedawayfromzero.Thelastsectiondealswithaclassofstochasticpar-tialdifferentialequationsperturbedbyaGaussiannoiseon[0,∞)×Rdwithhomogeneousspacialcovariance,intr
5、oducedbyDalangin[6].Wesurveytheresultsobtainedinsomerecentpapers[13;16;17]ontheregularityofthedensityforthesolutiontothisclassofequations.2MalliavinCalculusTheMalliavincalculusisaninfinitedimensionalcalculusonaGaussianspace,whichismainlyappliedtoestablishtheregularityofthelawofnonlinearfunctionalsof
6、theunderlyingGaussianprocess.D.KhoshnevisanandF.Rassoul-Agha(eds.)AMinicourseonStochasticPartial73DifferentialEquations.LectureNotesinMathematics1962.cSpringer-VerlagBerlinHeidelberg200974D.NualartSupposethatHisarealseparableHilbertspacewithscalarproductdenotedby·,·H.ConsideraGaussianfamilyofrand
7、omvariablesW={W(h),h∈H}definedinacompleteprobabilityspace(Ω,F,P),withzeromeanandcovarianceE(W(h)W(g))=h,gH.(1)Themappingh→W(h)providesalinearisometryofHontoaclosedsubspaceofHofL2(Ω).1Example2.1.(Brownianmo
此文档下载收益归作者所有