资源描述:
《高三数学总结——圆锥曲线》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、圆锥曲线(一)选择题1.(07山东卷(10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A)(B)(C)(D)答案:A2.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1只有一个公共点,则双曲线的离心率为().A.B.5C.D.【解析】:双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以△=,所以,,故选D.答案:D.【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位
2、置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.3.(2009山东卷文)设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为().A.B.C.D.【解析】:抛物线的焦点F坐标为,则直线的方程为,它与轴的交点为A,所以△OAF的面积为,解得.所以抛物线方程为,故选B.答案:B.24【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思
3、想,因参数的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.4、(2010山东文数)(9)已知抛物线,过其焦点且斜率为1的直线交抛物线与、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为(A)(B)(C)(D)答案:B5、(2010山东理数)(7)由曲线y=,y=围成的封闭图形面积为[来源:Www.ks5u.com](A)(B)(C)(D)【答案】A【解析】由题意得:所求封闭图形的面积为,故选A。【命题意图】本题考查定积分的基础知识,由定积分求
4、曲线围成封闭图形的面积。6、(2011山东理数8)已知双曲线的两条渐近线均和圆C:相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为A.B.C.D.答案:A7、(2011山东文数9)9.设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)答案:C8、(2012山东卷文(11))已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为D(A) (B) (C)
5、 (D)[来源:Z_xx_k.Com]24(二)填空题1、(07山东理)(13)设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为.答案:2、(2011山东文数15)已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为.答案:(三)解答题1、(07山东理)(21)(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆
6、的右顶点,求证:直线过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为,(II)设,由得,,.24以AB为直径的圆过椭圆的右顶点,,,,,解得,且满足.当时,,直线过定点与已知矛盾;当时,,直线过定点综上可知,直线过定点,定点坐标为2、(08山东文)22.(本小题满分14分)已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.(1)若(为坐标原点),
7、当点在椭圆上运动时,求点的轨迹方程;(2)若是与椭圆的交点,求的面积的最小值.解:(Ⅰ)由题意得又,解得,.24因此所求椭圆的标准方程为.(Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为,.解方程组得,,所以.设,由题意知,所以,即,因为是的垂直平分线,所以直线的方程为,即,因此,又,所以,故.又当或不存在时,上式仍然成立.综上所述,的轨迹方程为.(2)当存在且时,由(1)得,,24由解得,,所以,,.解法一:由于,当且仅当时等号成立,即时等号成立,此时面积的最小值是.当,.当不存在时,.综
8、上所述,的面积的最小值为.解法二:因为,又,,当且仅当时等号成立,即时等号成立,此时面积的最小值是.24当,.当不存在时,.综上所述,的面积的最小值为.3.(08山东卷22)(本小题满分14分)如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.(Ⅰ)求证:A,M,B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C