实数计算的常见类型及方法

实数计算的常见类型及方法

ID:37181352

大小:140.00 KB

页数:6页

时间:2019-05-21

实数计算的常见类型及方法_第1页
实数计算的常见类型及方法_第2页
实数计算的常见类型及方法_第3页
实数计算的常见类型及方法_第4页
实数计算的常见类型及方法_第5页
资源描述:

《实数计算的常见类型及方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.实数计算的常见类型及方法【精练】计算   3-2÷3+(-)0-3-1+(-3)2-32   解:原式=3-+1-+9-9=3   在算3-2÷3时易算成1÷3=,另外(-3)2与-32是有区别的.【知识规律串讲】一、实数的运算   (1)加法   同号两数相加,取原来的符号,并把绝对值相加;   异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。   (2)减法        a-b=a+(-b)   (3)乘法   两数相乘,同号得正,异号得负,并把绝对值

2、相乘;零乘以任何数都得零.即            (4)除法  (5)乘方    (6)开方  如果x2=a且x≥0,那么=x;如果x3=a,那么在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律 (1)加法交换律   a+b=b+a (2)加法结合律   (a+b)+c=a+(b+c) (3)乘法交换律   ab=ba. (4)乘法结合律   (ab)c=a(bc) (5)分配律       a(b+c)=ab+ac其中a、b、c表示任意实数.运用运算律有时可使

3、运算简便.  一、加法运算中的方法与技巧    例1 计算:(1)5-[2+(-4.8)-(-4)]..(2)|(-)-(-)+(-)|分析:(1)题的关键是确定运算顺序,有括号的还应先计算括号内的;(2)题的关键是求出绝对值符号中式子的值,进而求出整个式子的值.进行有理数的混合计算时,小学学过的确定运算顺序的方法仍然适用解(1)5-[2+(-4.8)-(-4)]=5-[2-4.8+4]=5-[7-4.8]=5-2.2=3,算顺序售量(2)|(-)-(-)+(-)|=|-+-|=|--+|=

4、-

5、=  【小结

6、】巧用加法的交换律与结合律,以达到简化的目的,同时注意交换加数位置时,一定要连同前面的符号一起移动.  实数加法运算中通常有以下规律:互为相反数的两个数先相加—“相反数结合法”;符号相同的数先相加—“同号结合法”;分母相同的数先相加—“同分母结合法”;几个数相加得到整数先相加—“凑整法”;整数与整数,小数与小数相加—“同形结合法”.  二、乘、除运算中的方法与技巧  例2:计算:(1)4--÷; (2)--3××(-1)÷(-1)...分析:(1)这里没有用括号规定运算顺序,所以我们应先算乘方,再算除法,最后

7、算除法.(2)用括号规定运算顺序,所以应先算括号内的,再按顺序进行.另外也可以利用乘法对加法的分配律去掉括号,然后再按顺序进行.解(1)4--÷ =4-(-8)-÷=4-(-8)-27÷=12+27=29(2)解法一:--3××(-1)÷(-1)         =-16-12×()÷(-)         =-16+8×(-)     =-16-6=-22解法二:--3××(-1)÷(-1)   =-16-12×(-1)×(-)   =-16-(4-12)×(-)   =-16+(3-9)=-22点评:在进

8、行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意在运算性质时不要出现错误.  三、幂的运算  【例3】计算:      【小结】表示4个-2相乘,负数的偶次方是正数,而的相反数,结果为负数,两者意义不同,注意区别.同理,表示3个-2相乘,表示的相反数,表示3个相乘,除以5的商的相反数,两者意义不同,注意观察,当底数是分数时,底数要加括号...      四、在混合运算中灵活运用运算律        【小结】此题利用分配律计算非常简便,但同时是同学们在计算时容易出错的地方.第一种方法是

9、把括号中的式子看作和的形式,分别相乘,再相加.第二种方法是先定符号,后面注意整体思想.第三种方法,第一部分相乘时先定符号,后定值.      【小结】善于观察,寻求解决问题的策略,是至关重要的.灵活使用交换律和分配律,使解决本题的步骤变得简捷明快...    【小结】有理数的加减乘除混合运算中,如果有括号通常先算括号里面的,如果无括号,则按照“先乘除,后加减”的顺序进行.此题,在将混合运算中的除法转化为乘法后,运用乘法运算律简化计算.同时注意多项式除以单项式可用分配律.单项式除以多项式不可用分配律,必须把除数

10、作为一个整体来进行计算.五、二次根式的运算  例8:小东在学习了后,认为也成立,因此他认为一个化简过程:=是正确的.你认为他的化简对吗? 说说你的理由。分析:二次根式的化简要根据其基本性质进行,对于性质:,是有条件的即:,,做题时应注意这一点。   解答:他的化简过程是错误的,这是因为:根据性质:,应有条件,,而该同学在的化简过程中,显然出现了违背条件的情况,与是没有意义的,因此他的化简过程是错误的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。