资源描述:
《2016年全国高考理科数学试卷与答案-全国卷1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、-绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A{x
2、x24x30},B{x
3、2x30},则AB()(A)(
4、3,3)(B)(3,3)(C)(1,3)(D)(3,3)2222(2)设(1i)x1yi,其中x,y是实数,则xyi=()(A)1(B)2(C)3(D)2(3)已知等差数列an前9项的和为27,a108,则a100()(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)1(B)1(C)2(D)33234x2y24,则n的(5)已知方程n3m21表
5、示双曲线,且该双曲线两焦点间的距离为m2n取值范围是()(A)(–1,3)(B)(–1,3)(C)(0,3)(D)(0,3)--(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28,则它的表面积是()3(A)17π(B)18π(C)20π(D)28π(7)函数y2x2ex在[2,2]的图像大致为()(A)(B)(C)(D)(8)若ab1,0c1,则()(A)acbc(B)abcbac(C)alogbcblogac(D)logaclogbc(9)执行右面的程序
6、图,如果输入的x0,y1,n1,则输出x,y的值满足()--(A)y2x(B)y3x(C)y4x(D)y5x--(10)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知AB42,DE25,则C的焦点到准线的距离为()(A)2(B)4(C)6(D)8(11)平面过正方体ABCDA1B1C1D1的顶点A,//平面CB1D1,平面ABCDm,平面ABB1A1n,则m、n所成角的正弦值为()(A)3(B)23122(C)(D)3312.已知函数f(x)sin(x+)(0,),x4为f(x
7、)的零点,x为24yf(x)图像的对称轴,且f(x)在5单调,则的最大值为()18,36(A)11(B)9(C)7(D)5第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分222(13)设向量a(m,1),b(1,2),且abab,则m.(14)(2xx)5的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列满足an满足a1a310,a2a45,则a1a2
8、an的最大值为。(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B----的利润之和的最大值为元。--三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本题满分为12分)ABC的内角A,B,C的对
9、边分别别为a,b,c,已知2cosC(acosB+bcosA)c.(I)求C;(II)若c7,ABC的面积为33,求ABC的周长.2(18)(本题满分为12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF2FD,AFD90,且二面角DAFE与二面角CBEF都是60.(I)证明;平面ABEF平面EFDC;(II)求二面角EBCA的余弦值.--(19)(本小题满分12分)--某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零
10、件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:--以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X--表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.--(I)求X的分布列;--(II)若要求P(Xn