探究式教学【教学设计】《平行四边形的判定》(人教)

探究式教学【教学设计】《平行四边形的判定》(人教)

ID:36943596

大小:219.47 KB

页数:6页

时间:2019-05-02

探究式教学【教学设计】《平行四边形的判定》(人教)_第1页
探究式教学【教学设计】《平行四边形的判定》(人教)_第2页
探究式教学【教学设计】《平行四边形的判定》(人教)_第3页
探究式教学【教学设计】《平行四边形的判定》(人教)_第4页
探究式教学【教学设计】《平行四边形的判定》(人教)_第5页
资源描述:

《探究式教学【教学设计】《平行四边形的判定》(人教)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第十八章平行四边形18.1.2平行四边形的判定本课时编写:重庆复旦中学余霖◆模式介绍“探究式教学”是以自主探究为主的教学。它是指教学过程是在教师的启发诱导下,以学生独立自主探究或合作讨论为前提,以现行教材为基本探究内容,以学生周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的一种教学形式。学生对当前教学内容中的主要知识点进行自主学习、深入探究并进行小组合作交流,以自我获取,自我求证的方式深化知识的理解和运用。从而较好地达到课程标准中关于认知目标与情感目标要求的一种教学模式。其中认知目标涉及与学科相关知识、概念、原理与能力的掌握;情感目标注重科学素养与道德品质的培养。

2、探究式教学的课程环节:创设情境——启发思考——自主探究——协作交流——总结提高◆思路说明数学教学是数学活动的教学,是一个使师生之间、学生之间交往互动与共同发展的过程。教师应该从学生的实际出发,创设有助于学生自主学习的问题情境,使学生在具体情境中发现问题、提出问题、解决问题。本节知识利用大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在

3、教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识,提高学生分析问题和解决问题的能力。◆教材分析本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性

4、的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.◆教学目标1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质。2、能综合运用

5、平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题。3、培养学生的推理论证能力和逻辑思维能力◆教学重难点【教学重点】平行四边形对角线互相平分的性质,以及性质的应用。【教学难点】综合运用平行四边形的性质进行有关的论证和计算。◆课前准备教学PPT◆教学过程例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的。例2,这是复习巩固小学学过的平行四边形面积计算

6、.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法。(一)课堂引入复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.(二)探究新知请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋

7、转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分。(三)例题分析例1(补充) 已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。