欢迎来到天天文库
浏览记录
ID:36934210
大小:931.50 KB
页数:7页
时间:2019-04-28
《第十五章 15.2 分式的运算例题与讲解 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、15.2 分式的运算1.分式的乘除1(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:·=.(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:÷=·=.分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】计算:(1)·;(2)÷;(3)·;(4)÷(4x2-y2).解:(1)·==;(2)÷=·==;(3)·=·==;(4)÷(4x2-y2)=·=.2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:=.解技巧分式的乘方的理解
2、(1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】计算:(1);(2).解:(1)==;(2)===-.3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减;②用式子表示:±=.(2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减;②用式子表示:±=±=.警误区分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减
3、法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】计算:(1)+;(2)-;(3)-+;(4)+;(5)-;(6)-a-2.解:(1)+====;(2)-=+===;(3)-+=-+====;(4)+=-=-===-;(5)-=-===-;(6)-a-2=-(a+2)=-=-===-.4.整数指数幂一般地,当n是正整数时,a-n=(a≠0).这就是说,a-n(a≠0)是an的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m,n为整数时,am÷an=am-n,am·a-n=am
4、+(-n)=am-n,因此am÷an=am·a-n.特别地,=a÷b=a·b-1,所以=(a·b-1)n,即商的乘方可以转化为积的乘方(a·b-1)n.这样,整数指数幂的运算性质可以归纳为:(1)am·an=am+n(m,n是整数);(2)(am)n=amn(m,n是整数);(3)(ab)n=anbn(m,n是整数).【例4】计算:(1);(2)a2b-3(a-1b)3÷(ab)-1.解:(1)===;(2)a2b-3(a-1b)3÷(ab)-1=a2b-3·a-3b3·ab=a0b=b.5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a×10n
5、的形式,其中1≤
6、a
7、<10,n为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a×10-n的形式,其中n为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤
8、a
9、<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】把下列各数用科学记数法表示出来:(1)650000;(2)-36900000;(3)0.0000021;(4)-0.00000657.解:(1)650000=6.5×105;(2)-36900000=-3.69×107;(3)0.0000021=2.1×10-6;(4)-0.000006
10、57=-6.57×10-6.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧分式混合运算的技巧 分式四则混合运算要注意:(1)按
11、照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】计算:÷(x-1)2·.分析:按照从左到右的顺序依次运算,把除法运算转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式或整式.解:÷(x-1)2·=·
12、·=-.【
此文档下载收益归作者所有