资源描述:
《27.2.2二次函数y=a(x-h)^2+k的图象与性质___课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22、1、3二次函数y=a(x-h)2+k的图象和性质y=ax2y=a(x-h)2y=ax2+ky=ax2k>0k<0上移下移左加右减复习:说出平移方式,并指出其顶点与对称轴。顶点x轴上顶点y轴上问题:顶点不在坐标轴上的二次函数又如何呢?例3.画出函数的图像.指出它的开口方向、顶点与对称轴、x…-4-3-2-1012………解:先列表再描点后连线.-5.5-3-1.5-1-1.5-3-5.5探究:12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10直线x=-1…………210-1-2-3-4x解:先列表再描点、连线-5.5-3-1.5-1-1.5-3-5.5讨论
2、抛物线的开口向下,对称轴是直线x=-1,顶点是(-1,-1).抛物线的开口方向、对称轴、顶点?向左平移1个单位向下平移1个单位向左平移1个单位向下平移1个单位平移方法1:平移方法2:二次函数图像平移12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10x=-1(2)抛物线有什么关系?归纳一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)向右(左)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.向左(右)平移
3、h
4、个单位向上(下)平移
5、k
6、个单位y=ax2y=a(x-h)2y=a(
7、x-h)2+ky=ax2y=a(x-h)2+k向上(下)平移
8、k
9、个单位y=ax2+k向左(右)平移
10、h
11、个单位平移方法:抛物线y=a(x-h)2+k有如下特点:(1)当a>0时,开口向上;当a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点是(h,k).练习二次函数开口方向对称轴顶点坐标y=2(x+3)2+5向上(1,-2)向下向下(3,7)(2,-6)向上直线x=-3直线x=1直线x=3直线x=2(-3,5)y=-3(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-61.完成下列表格:2.请回答抛物线y=4(x-3)2+7由抛物线y=4x2怎样平移得到?3.抛物线y
12、=-4(x-3)2+7能够由抛物线y=4x2平移得到吗?练习y=−2(x+3)2-2画出下列函数图象,并说出抛物线的开口方向、对称轴、顶点,最大值或最小值各是什么及增减性如何?。y=2(x-3)2+3y=−2(x-2)2-1y=3(x+1)2+1y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k上下平移
13、k
14、个单位左右平移
15、h
16、个单位上下平移
17、k
18、个单位左右平移
19、h
20、个单位结论:一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同。各种形式的二次函数的关系如何平移:例题C(3,0)B(1,3)例4.要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端
21、安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?AxOy123123解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点.因此可设这段抛物线对应的函数是∵这段抛物线经过点(3,0)∴0=a(3-1)2+3解得:因此抛物线的解析式为:y=a(x-1)2+3(0≤x≤3)当x=0时,y=2.25答:水管长应为2.25m.34a=-y=(x-1)2+3(0≤x≤3)34-一个运动员推铅球,铅球出手点在A处,出手时球离地面 m ,铅球运行所经过的路线是抛物线,已知铅球在运动员前4m处达到最高点,最高点高为3m,你
22、能算出该运动员的成绩吗?4米3米一场篮球赛中,小明跳起投篮,已知球出手时离地面高 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中?3米8米4米4米yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789yX(8,3)(5,4)(4,4)0123456789在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?(7,3)●若假设出手的角度和力度都不变,则如何才能使此球命中?(1)跳得高一点(2
23、)向前平移一点(1)抛物线y=a(x+2)2-3经过点(0,0),则a=。(2)设抛物线的顶点为(1,-2),且经过点(2,3),求它的解析式。(3)抛物线y=3x2向右平移3个单位再向下平移2个单位得到的抛物线是。(4)抛物线y=2(x+m)2+n的顶点是。谈谈你对本节课有什么收获?作业:P15练习1、2、3、4题