欢迎来到天天文库
浏览记录
ID:36887485
大小:769.50 KB
页数:13页
时间:2019-05-10
《15.1.4整式的乘法1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、单项式与单项式相乘§15.1整式的乘法知识回顾:1、同底数幂的乘法:2、幂的乘方:3、积的乘方:aman=am+n(am)n=amn(ab)n=anbnxn+xn=2xn4、合并同类项:axn+bxn=(a+b)xn幂的三个运算性质注意:m,n为正整数,底数a可以是数、字母或式子。判断并纠错:①m2·m3=m6()②(a5)2=a7()③(ab2)3=ab6()④m5+m5=m10()⑤(-x)3·(-x)2=-x5()⑥b3·b3=2b3()⑦(-3xy)2=-6x2y2()⑧(a3+b2)3=a9+b6()×m5×a10×a3b6×2m5√×b6
2、×9x2y2×→→→→→→→光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?(3×105)×(5×102)千米如何计算这个式子解:原式=(3×5)×(105×102)(乘法的交换律与结合律)=15×107=1.5×108地球与太阳的距离约是:结果规范为科学记数法的书写形式解:==相同字母的指数的和作为积里这个字母的指数只在一个单项式里含有的字母连同它的指数作为积的一个因式各因式系数的积作为积的系数单项式乘以单项式的结果仍是单项式.注意点计算:类似地,下式子如何表示得更简单些4x2·
3、(-3xy2)试一试我们来总结一下简化这种算式的方法与步骤解:原式=[4×(-3)](x2·x)y2=-12x3y24x2·(-3xy2)系数相乘相同字母相乘只在一个单项式里含有的字母,连同它的指数作为积的一个因式(x2·x)=[4×(-3)]y2①(-5a2b3)·(-4b2c);②(2x)3(-5xy2)解:①(-5a2b3)·(-4b2c)=20a2b5c解题格式规范训练②(2x)3(-5xy2)=[8×(-5)]·(x3·x)·y=-40x4y2=[(-5)×(-4)]·a2·(b3·b2)·c=8x3·(-5xy2)有积的乘方怎么办?运算时
4、应先算什么?注意:有乘方运算,先算乘方,再算单项式相乘。例1计算:计算:①3x5·x3②(-5a2b3)(-3a)③(4×105)·(5×106)·(3×104)④(-5an+1b)·(-2a)⑤(2x)4·(-3x2y)⑥(-xy2z3)4·(-x2y)3练习反馈x815a3b36×101610an+2b-48x6y-x10y11z12快速抢答:①(-2y)·(3xy5)②3x·5x2·(-x3y)③(-2.5x)·(-4x)④x2yz·xyz3⑤(2×105)(2×105)⑥(-2x)3(-4x2)⑦xm+1y·6xym-1-15x6y-6x
5、y610x2x3y2z44×1010=(-8x3)·(-4x2)=32x56xm+2ym下面计算对不对?如果不对,应当怎样改正?(1)3a3·2a2=6a6()(2)2x2·3x2=6x4()(3)3x2·4x2=12x2()(4)5y3·3y5=15y15()课本题目:练习题×××√6a512x415y8这一节课你学到了什么?单项式乘以单项式的法则单项式乘以单项式:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数不变,作为积的因式。法则中涉及的旧知识主要有哪些?1.乘法交换律及结合律。2.有理数的乘法。3.同底数幂相乘。
6、要注意结果中的单项式的规范书写和符号思维延伸已知,xm=,xn=3.求下列各式的值:(1)xm+n;(2)x2m•x2n;(3)x3m+2n.解:(1)xm+n=xm•xn=×3=;(2)x2m•x2n=(xm)2•(xn)2=()2×32=×9=;(3)x3m+2n=x3m•x2n=(xm)3•(xn)2=()3×32=×9=再见
此文档下载收益归作者所有