欢迎来到天天文库
浏览记录
ID:36887374
大小:972.50 KB
页数:76页
时间:2019-05-10
《《数学多元回归》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章经典单方程计量经济学模型:多元回归第三章经典单方程计量经济学模型:多元回归多元线性回归模型多元线性回归模型的参数估计多元线性回归模型的统计检验多元线性回归模型的预测非线性模型的线性化回归模型的参数约束§3.1多元线性回归模型一、多元线性回归模型的形式二、多元线性回归模型的基本假定一、多元线性回归模型的形式多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式:其中:k为解释变量的数目,j称为回归参数(regressioncoefficient)。习惯上:把常数项看成为一虚变量的系数,该虚变量的样本观测值始终取1。这样:模型中解释变量的数目为
2、(k+1)也被称为总体回归函数的随机表达形式。它的非随机表达式为:方程表示:各变量X值固定时Y的平均响应。j也被称为偏回归系数,表示在其他解释变量保持不变的情况下,Xj每变化1个单位时,Y的均值E(Y)的变化;或者说j给出了Xj的单位变化对Y均值的“直接”或“净”(不含其他变量)影响。样本回归函数:用来估计总体回归函数其随机表示式:e称为残差或剩余项(residuals),可看成是总体回归函数中随机扰动项的近似替代。二、多元线性回归模型的基本假定假设1,回归模型正确设定。假设2,解释变量是非随机的或固定的,且假设3,各解释变量X在所抽取的样本中具有变异性,
3、且样本容量趋于无穷时,各解释变量的方差趋于有界常数,即n∞时假设4,随机误差项具有零均值、同方差及不序列相关性假设5,解释变量与随机项不相关假设6,随机项满足正态分布各X之间互不相关(无多重共线性)。§3.2多元线性回归模型的估计估计方法:OLS、ML或者MM一、普通最小二乘估计*二、最大或然估计*三、矩估计四、参数估计量的性质五、样本容量问题六、估计实例一、普通最小二乘估计对于随机抽取的n组观测值如果样本函数的参数估计值已经得到,则有:i=1,2…n根据最小二乘原理,参数估计值应该是下列方程组的解其中于是得到关于待估参数估计值的正规方程组:⃟随机误差项的方
4、差的无偏估计可以证明,随机误差项的方差的无偏估计量为四、参数估计量的性质在满足基本假设的情况下,其结构参数的普通最小二乘估计仍具有:线性性、无偏性、有效性。同时,随着样本容量增加,参数估计量具有:渐近无偏性、渐近有效性、一致性。1、线性性其中,C=(X’X)-1X’为一仅与固定的X有关的行向量2、无偏性这里利用了假设:E(X’)=03、有效性(最小方差性)其中利用了和五、样本容量问题所谓“最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。⒈最小样本容量样本最小容量必须不少于模型中解释变量的数目(
5、包括常数项),即nk+1因为,无多重共线性要求:秩(X)=k+12、满足基本要求的样本容量从统计检验的角度:n30时,Z检验才能应用;n-k8时,t分布较为稳定一般经验认为:当n30或者至少n3(k+1)时,才能说满足模型估计的基本要求。模型的良好性质只有在大样本下才能得到理论上的证明六、多元线性回归模型的参数估计实例例3.2.2在例2.5.1中,已建立了中国居民人均消费一元线性模型。这里我们再考虑建立多元线性模型。解释变量:人均GDP:GDPP前期消费:CONSP(-1)估计区间:1979~2000年Eviews软件估计结果§3.3多元线性回归模型的
6、统计检验一、拟合优度检验二、方程的显著性检验(F检验)三、变量的显著性检验(t检验)四、参数的置信区间一、拟合优度检验1、可决系数与调整的可决系数则总离差平方和的分解由于=0所以有:注意:一个有趣的现象可决系数该统计量越接近于1,模型的拟合优度越高。问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大(Why?)这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。调整的可决系数(adjustedcoefficientofdetermination)在样本容量
7、一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响:其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。问题:多大才算通过拟合优度检验?EVIEWS软件中,直接给出可决系数和调整后的可决系数:*2、赤池信息准则和施瓦茨准则为了比较所含解释变量个数不同的多元回归模型的拟合优度,常用的标准还有:赤池信息准则(Akaikeinformationcriterion,AIC)施瓦茨准则(Schwarzcriterion,SC)这两准则均要求仅当所增加的解释变量能够减少
8、AIC值或AC值时才在原
此文档下载收益归作者所有