沪科版八年级数学下知识点总结

沪科版八年级数学下知识点总结

ID:36843952

大小:532.50 KB

页数:17页

时间:2019-05-16

沪科版八年级数学下知识点总结_第1页
沪科版八年级数学下知识点总结_第2页
沪科版八年级数学下知识点总结_第3页
沪科版八年级数学下知识点总结_第4页
沪科版八年级数学下知识点总结_第5页
资源描述:

《沪科版八年级数学下知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、-沪科版八年级数学下知识点总结二次根式知识点:知识点一:二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。知识点二:取值范围1.   二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2.   二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。知识点

2、三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。--注:二次根式的性质公式()是逆用平方根的定义得

3、出的结论。上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中

4、a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的, ,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的性质和最简二次根式  如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y等;--  含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等(3)最终结果分母不含根号。知识点八:二次根式的乘法和除法  1.积的算数平方根的性质  √ab=√a·√b(a≥0,b≥0)  2

5、.乘法法则  √a·√b=√ab(a≥0,b≥0)  二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。  3.除法法则  √a÷√b=√a÷b(a≥0,b>0)  二次根式的除法运算法则,用语言叙述为:两个数的算数平方根的商,等于这两个数商的算数平方根。  4.有理化根式。  如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。知识点九:二次根式的加法和减法  1同类二次根式  一般地,把几个二次根式化为最简二次根式后,如果它们的被

6、开方数相同,就把这几个二次根式叫做同类二次根式。  2合并同类二次根式  把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。  3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。--知识点十:二次根式的混合运算  1确定运算顺序  2灵活运用运算定律  3正确使用乘法公式  4大多数分母有理化要及时  5在有些简便运算中也许可以约分,不要盲目有理化知识点十一:分母有理化  分母有理化有两种方法  I.分母是单项式  如:√a/√b=√a×√b/√b×√b=√ab/b   II

7、.分母是多项式  要利用平方差公式  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b  如图  注意:1.根式中不能含有分母2.分母中不能含有根式。--一元二次方程知识点:1.一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c;其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方

8、法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3.一元二次方程根的判别式:当ax2+bx+c=0(a≠0)时,Δ=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:Δ>0<=>有两个不等的实根;Δ=0<=>有两个相等的实根;Δ<0<=>无实根;Δ≥0<=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。