2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似

2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似

ID:36797210

大小:4.69 MB

页数:115页

时间:2019-05-15

2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似_第1页
2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似_第2页
2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似_第3页
2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似_第4页
2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似_第5页
资源描述:

《2015年全国中考数学试卷解析分类汇编(第一期)专题26 图形的相似与位似》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、图形的相似与位似一.选择题1.(2015•淄博第8题,4分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理..专题:压轴题.分析:根据三角形的中位线求出EF=BD,EF∥BD,推出△AEF∽△ABD,得出=,求出==,即可求出△AEF与多边形BCDFE的面积之比.解答:解:连接BD,∵F、E分别为AD、AB中点,第1页

2、共115页∴EF=BD,EF∥BD,∴△AEF∽△ABD,∴==,∴△AEF的面积:四边形EFDB的面积=1:3,∵CD=AB,CB⊥DC,AB∥CD,∴==,∴△AEF与多边形BCDFE的面积之比为1:(3+2)=1:5,故选C.点评:本题考查了三角形的面积,三角形的中位线等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,难度适中.2.(2015·湖北省武汉市,第6题3分)如图,在直角坐标系中,有两点A(6,3)、B(6,0).以1原点O为位似中心,相似比为,在第一象限内

3、把线段AB缩小后得到线段CD,则点C的3坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)1.AODCD1【解析】∵线段CD和线段AB关于原点位似,∴△ODC∽△OBA,∴,即OBAB3ODCD1,∴CD=1,OD=2,∴C(2,1).633xy1一题多解—最优解:设C(x,y),∵线段CD和线段AB关于原点位似,∴,∴x=2,633y=1,∴C(2,1).第2页共115页备考指导:每对对应点的连线所在的直线都相交于一点的相似图形叫做位似图形.位似图形对应点到位似中心

4、的距离比等于位似比(相似比);在平面直角坐标系中,如果位似图形是以原点为位似中心,那么位似图形对应点的坐标比等于相似比.3.(2015•湖南株洲,第7题3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()1234A.B.C.D.3345【试题分析】本题考点为:相似的三角形性质的运用:利用AB∥EF∥CD得到△ABE∽△DCE,得到ECDC1EFBEBE1,△BEF∽△BCD得到,故可知答案BEAB3CDBCBEEC4答案为:C4

5、.(2015•江苏南京,第3题3分)如图所示,△ABC中,DE∥BC,若,则下列结论中正确的是()A.B.C.D.【答案】C.第3页共115页【解析】试题分析:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴两相似三角形的相似比为1:3,∵周长的比等于相似比,面积的比等于相似比的平方,∴C正确.故选C.考点:相似三角形的判定与性质.5.(2015•甘肃武威,第9题3分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,

6、则S△DOE:S△AOC的值为()A.B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.解答:解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.第

7、4页共115页6.(2015湖南岳阳第8题3分)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④考点:切线的判定;相似三角形的判定与性质..分析:根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性

8、质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定与相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.解答:解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,第5页共115

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。