欢迎来到天天文库
浏览记录
ID:36770851
大小:443.10 KB
页数:4页
时间:2019-05-15
《基于小波变换的最优滤波的图像去噪》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、32InternationalJournalofInformationProcessingSystemsVol.1,No.1,2005Wavelet-basedImageDenoisingwithOptimalFilterYong-HwanLee*,andSang-BurmRhee*Abstract:Imagedenoisingisbasicworkforimageprocessing,analysisandcomputervision.Thispaperproposesanovelalgorithmbasedo
2、nwaveletthresholdforimagedenoising,whichiscombinedwiththelinearCLS(ConstrainedLeastSquares)filteringandthresholdingmethodsinthetransformdomain.WedemonstratedthroughsimulationswithimagescontaminatedbywhiteGaussiannoisethatourschemeexhibitsbetterperformanceinbo
3、thPSNR(PeakSignal-to-NoiseRatio)andvisualeffect.Keywords:ImageDenoising,NoiseReductionWavelet1.Introductionthisworkswellonlyiftheunderlyingsignalissmooth.Toovercometheweaknessofthespatialfiltering,awaveletDigitalimageshaveapplicationsindailylife,suchasbasedde
4、noisingschemeisintroduced[2].Waveletsgiveadigitalcameras,HDTV(HighDefinitionTelevision)andinsuperiorperformanceinimagedenoisingduetopropertiesareasofresearchandtechnologyincludingGIS(Geo-suchassparsityandmultiresolutionstructure.graphicalInformationSystem).Da
5、tasetscollectedbySimpledenoisingalgorithmsthatusedthewaveletimagesensorsaregenerallycontaminatedbynoiseandtransformconsistofthethreesteps[3].noisecanbeintroducedbytransmissionerrorsandStep1.Calculatethewavelettransformofthenoisycompression.Theproblemofimagede
6、noisingistorecoversignal;animagethatiscleanerthanitsnoisyobservation.Thus,Step2.Modifythenoisywaveletcoefficientsaccordingnoisereductionisanimportanttechnologyinimagetoarule;analysisandthefirststeptobetakenbeforeimagesareStep3.Computetheinversetransformusingt
7、heanalyzed[1].modifiedcoefficients;Althoughwaveletshaveefficientnoisereductionability,Oneofthemostwell-knownrulesforstep2issoftwaveletsstillhaveproblemsonaheavynoisynetwork.Wethresholdinganalyzedby[4].Duetoitseffectivenessandinvestigatetheproblemofimagedenois
8、ingwhenthesimplicity,itisfrequentlyusedintheliterature.ThemainsourceimageiscorruptedbyadditivewhiteGaussiannoise,ideaistosubtractthethresholdvalueTfromallwhichisavalidassumptionforimageso
此文档下载收益归作者所有