欢迎来到天天文库
浏览记录
ID:36758084
大小:148.42 KB
页数:5页
时间:2019-05-14
《2展开与折叠》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2展开与折叠备课人:王军【知识与技能】1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;2.了解圆柱、圆锥的侧面展开图.【过程与方法】经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验,形成较为规范的语言.【情感态度】在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣。【教学重点】在操作活动中,发展空间观念、积累数学活动经验,掌握和识别棱柱、圆柱、圆锥等几何体的展开图.【教学难点】根据几何体的展开图判断能折叠成什么样的几何体.一、情境导入,初步认识在生活中,我们经常见到正
2、方体形状的盒子.为了设计和制作这样的盒子,我们需要了解这种盒子展开后的平面图形.1.正方体有多少个面?多少条棱?多少个顶点?2.请同学们将自己准备的纸盒剪开,看看展开后的形状是怎样的?【教学说明】学生很容易得出正方体有6个面、12条棱、8个顶点,让学生自己动手操作有利于学生直观地了解正方体的展开图.二、思考探究,获取新知1.正方体的展开图问题1将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?【教学说明】学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再贴),再让学生讨论怎样分类.【归纳结论】将
3、正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形,可分为四类.141型(共6种)231型(共3种)33型(1种)222型(1种)问:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?学生分组进行讨论,得出结论.【归纳结论】由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.2.平面图形的折叠问题2下图中的图形经过折叠能否围成一个正方体?【教学说明】学生动手实际操作,激发学生的积极性和主动性,有助于学生得出正确的结论,发展学生的几何直观性.【归纳结论】若是正方体11
4、种展开图的平面图形就能折叠成一个正方体,否则不能折叠成一个正方体.3.圆柱、圆锥的侧面展开图问题3教材第10页“做一做”的内容【教学说明】学生动手操作,能直观地得出结论.【归纳结论】圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形.三、运用新知,深化理解1.上图中经过折叠能围成棱柱的是(填序号).2.画出下面棱柱的一种展开图.【教学说明】学生自主完成,加深对新学知识的掌握和理解.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(2)(4)2.四、师生互动,课堂小结1.正方体的展开图,圆柱、圆锥的侧面展开图.2.通过这
5、节课的学习,学到了哪些新知识?【教学说明】教师引导学生回顾本节课所学知识,加深对新知识的理解.1.布置作业:从教材“习题1.3,1.4”中选取.2.完成练习册中本课时的相应作业.本节课通过学生自己动手操作,感受正方体的展开与折叠,了解圆柱、圆锥的侧面展开图,进而了解其他几何体的展开与折叠,学生积极性较高.
此文档下载收益归作者所有