欢迎来到天天文库
浏览记录
ID:36729168
大小:338.00 KB
页数:17页
时间:2019-05-14
《2014年中考数学试卷分类汇编:三角形的边与角(全国120份)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、三角形的边与角一、选择题1.(2014•山东威海,第9题3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是() A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°考点:角平分线的性质;三角形内角和定理分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠D
2、OC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.解答:解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项结论正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项结论错误
3、;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项结论正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项结论正确.故选B.点评:本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.2.(2014•山东临沂,第3题3分)如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( ) A.40°B.60°C.8
4、0°D.100°考点:平行线的性质;三角形的外角性质.分析:根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.3.(2014•江苏苏州,第6题3分)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为(
5、 ) A.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.4.(2014•福建福州,第6题4分)下列命题中,假命题是【】A.对顶角相等B.三
6、角形两边和小于第三边C.菱形的四条边都相等D.多边形的内角和等于360°5.(2014·台湾,第20题3分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?( )A.AD=AEB.AE<AEC.BE=CDD.BE<CD分析:由∠C<∠B利用大角对大边得到AB<AC,进一步得到BE+ED<ED+CD,从而得到BE<CD.解:∵∠C<∠B,∴AB<AC,即BE
7、+ED<ED+CD,∴BE<CD.故选D.点评:考查了三角形的三边关系,解题的关键是正确的理解题意,了解大边对大角.6.(2014·云南昆明,第5题3分)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85°B.80°C.75°D.70°考点:角平分线的性质,三角形外角性质.分析:首先角平分线的性质求得的度数,然后利用三角形外角性质求得∠BDC的度数即可.解答:解:∠ABC=70°,BD平分∠ABC∠A=50°∠BDC故选A.点评:本题考查了三角形角平分
8、线的性质和三角形外角性质.,属于基础题,比较简单.7.(2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( ) A.1,2,3B.1,1,C.1,1,D.1,2,考点:解直角三角形专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是
此文档下载收益归作者所有