基于DSP的FFT的设计与开发

基于DSP的FFT的设计与开发

ID:36623295

大小:830.50 KB

页数:23页

时间:2019-05-13

基于DSP的FFT的设计与开发_第1页
基于DSP的FFT的设计与开发_第2页
基于DSP的FFT的设计与开发_第3页
基于DSP的FFT的设计与开发_第4页
基于DSP的FFT的设计与开发_第5页
资源描述:

《基于DSP的FFT的设计与开发》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、合肥学院综合课程设计报告题目:基于DSP的FFT滤波器设计系别:08级电子系专业:电子信息工程班级:1班学号:0805070101姓名:严骏导师:汪济洲成绩:________________________2011年11月27日摘要随着计算机和微电子技术的飞速发展,基于数字信号处理的频谱分析已经应用到各个领域并且发挥着重要作用。信号处理方法是当前机械设备故障诊断中重要的技术基础之一,分析结果的精确程度是诊断成功与否的关键因素。研究频谱分析是当前主要的发展方向之一。数字信号处理基本上从两个方面来解决信号的处理问题:一个是时域方法,即数字滤波;另一个是频域方法,即频谱分析.本文

2、主要介绍了离散傅里叶变换以及快速傅里叶变换,通过对DFT以及FFT算法进行研究,从基础深入研究和学习,掌握FFT算法的关键。通过对DSP芯片工作原理以及开发环境的学习,掌握CCS的简单调试和软件仿真,在DSP芯片上实现对信号的实时频谱分析。关键词:FFT;频谱分析;DSP;目录摘要21绪论41.1引言41.2频谱分析的技术发展41.3本论文主要研究的内容62快速傅里叶变换(FFT)72.1FFT算法基本原理72.2基-2FFT算法83FFT算法的DSP的实现123.1基于DSP实现FFT变换频谱分析12结论18参考文献19附录201绪论1.1引言随着数字技术与计算机技术的发

3、展,数字信号处理(DSP)技术已深入到各个学科领域。近些年来,数字信号处理技术同数字计算器、大规模集成电路等,有了突飞猛进的发展。在数字信号处理中,离散傅里叶变换(Discrete.TimeFourierTransform,DFT)是常用的变换方法,它在数字信号处理系统中扮演着重要角色。由离散傅里叶变换发现频率离散化,可以直接用来分析信号的频谱、计数滤波器的频率响应,以及实现信号通过线系统的卷积运算等,因而在信号的频谱分析方面有很大的作用。由于DFT的运算量太大,即使是采用计算机也很难对问题进行实时处理,所以经过很多学者的不懈努力,便出现了通用的快速傅里叶变换(FFT)。快

4、速傅里叶变换(FastFourierTransform,FFT)并不是与离散傅里叶变换不同的另一种变换,而是为了减少DFT计算次数的一种快速有效的算法。对FFT算法及其实现方式的研究是很有意义的。目前,FFT己广泛应用在频谱分析、匹配滤波、数字通信、图像处理、语音识别、雷达处理、遥感遥测、地质勘探和无线保密通讯等众多领域。在不同应用场合,需要不同性能要求的FFT处理器。在很多应用领域都要求FFT处理器具有高速度、高精度、大容量和实时处理的性能。因此,如何更快速、更灵活地实现FFT变得越来越重要。数字信号处理器(DSP)是一种可编程的高性能处理器。它不仅是一种适用于数字信号处

5、理,而且在图像处理、语音处理、通信等领域得到广泛的应用。DSP处理器中集成有高速的乘法硬件,能快速的进行大量的乘法加法运算[1]。1.2频谱分析的技术发展频谱分析在生产实践和科学研究中获得日益广泛的应用。例如,对汽车、飞机、轮船、汽轮机等各类旋转机械、电机、机床等机器的主体或部件进行实际运行状态下的谱分析,可以提供设计数据和检验设计效果,或者寻找振源和诊断故障,保证设备的安全运行等;在声纳系统中,为了寻找海洋水面船只或潜艇,需要对噪声信号进行谱分析,以提供有用信息,判断舰艇运动速度、方向、位置、大小等。因此对谱分析方法的研究,受到普遍注意和重视,是当前信号处理技术中一个十分

6、活跃的课题。1965年库利首次提出了快速傅里叶变换(FFT)算法,FFT和频谱分析很快发展成为机械设备故障诊断、振动分析、无线电通信、信息图象处理和自动控制等多种学科重要的理论基础。然而长期的应用和近年来的理论分析表明:经快速傅立叶变换得到的离散频谱,频率、幅值和相位均可能产生较大误差,单谐波加矩形窗时最大误差从理论上分析可达36.4%;即使加其他窗时,也不能完全消除此影响,在加汉宁(Hanning)窗时,只进行幅值恢复时的最大幅值误差仍高达15.3%,相位误差高达90度。因此,频谱分析的结果在许多领域只能定性而不能精确的定量分析和解决问题,大大限制了该技术的工程应用,特别

7、是在机械振动和故障诊断中的应用受到极大限制。从70年代中期,有关学者开始致力于频谱校正理论的研究以期解决离散频谱误差较大的问题。1975年JohnC.Burges等从事电学领域研究工作的学者采用插值法对加矩形窗的离散化频谱进行校正,解决了电学中的离散高次谐波参数的精确测量问题。1983年ThomasGrandke提出了加Hanning窗的内插法,进一步提高了离散高次谐波参数的分析精度。1993年,丁康和谢明提出了三点卷积法幅值校正法,提高了频率间隔较大的信号的离散频谱幅值精度,解决了工程实际中的一些问题。1994年

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。