基于dsp的fft设计

基于dsp的fft设计

ID:15228702

大小:910.50 KB

页数:46页

时间:2018-08-02

基于dsp的fft设计_第1页
基于dsp的fft设计_第2页
基于dsp的fft设计_第3页
基于dsp的fft设计_第4页
基于dsp的fft设计_第5页
资源描述:

《基于dsp的fft设计》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、自本1004班邓静28号基于DSP的FFT滤波器设计1引言随着数字技术与计算机技术的发展,数字信号处理(DSP)技术已深入到各个学科领域。近些年来,数字信号处理技术同数字计算器、大规模集成电路等,有了突飞猛进的发展。在数字信号处理中,离散傅里叶变换(Discrete.TimeFourierTransform,DFT)是常用的变换方法,它在数字信号处理系统中扮演着重要角色。由离散傅里叶变换发现频率离散化,可以直接用来分析信号的频谱、计数滤波器的频率响应,以及实现信号通过线系统的卷积运算等,因而在信号的频谱分析

2、方面有很大的作用。由于DFT的运算量太大,即使是采用计算机也很难对问题进行实时处理,所以经过很多学者的不懈努力,便出现了通用的快速傅里叶变换(FFT)。快速傅里叶变换(FastFourierTransform,FFT)并不是与离散傅里叶变换不同的另一种变换,而是为了减少DFT计算次数的一种快速有效的算法。对FFT算法及其实现方式的研究是很有意义的。目前,FFT己广泛应用在频谱分析、匹配滤波、数字通信、图像处理、语音识别、雷达处理、遥感遥测、地质勘探和无线保密通讯等众多领域。在不同应用场合,需要不同性能要求的

3、FFT处理器。在很多应用领域都要求FFT处理器具有高速度、高精度、大容量和实时处理的性能。因此,如何更快速、更灵活地实现FFT变得越来越重要。数字信号处理器(DSP)是一种可编程的高性能处理器。它不仅是一种适用于数字信号处理,而且在图像处理、语音处理、通信等领域得到广泛的应用。DSP处理器中集成有高速的乘法硬件,能快速的进行大量的乘法加法运算[1]。本文主要介绍基于DSP用FFT变换实现对信号的频谱分析。研究离散傅里叶变换以及快速傅里叶变换的原理及算法。快速傅里叶变换和离散傅里叶变换的基本理论是一样的,它根

4、据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换进行了改进。在计算机系统或者数字系统中广泛应用者快速傅里叶变换,这是一个巨大的进步。本文主要解决的问题就是如何对信号的频谱进行研究,使FFT更广泛的应用于科学研究。2快速傅里叶变换(FFT)2.1FFT算法基本原理快速傅里叶变换(FFT)是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换的算法进行改进获得的,它对离散傅里叶变换并没有新的发现。有限长序列x(n)及其频域表示X(k)可由以下离散傅立叶变换得出(1)(

5、2)其中。式(1)称为离散傅立叶正变换,式(2)称为离散傅立叶逆变换,x(n)与X(k)构成了离散傅立叶变换对。根据上述公式,计算一个X(k),需要N次复数乘法和N-1次复数加法,而计算全部X(k)(),共需要次复数乘法和N(N-1)次复数加法。实现一次复数乘法需要四次实数乘法和两次实数加法,一次复数加法需要两次实数加法,因此直接计算全部X(k)共需要4次实数乘法和2N(2N-1)次实数加法。当N较大时,对实时信号处理来说,对处理器计算速度有十分苛刻的要求,于是如何减少计算离散傅里叶变换运算量的问题变得至关

6、重要。为减少运算量,提高运算速度,就必须改进算法。计算DFT过程中需要完成的运算的系数里,存在相当多的对称性。通过研究这种对称性,可以简化计算过程中的运算,从而减少计算DFT所需的时间。如前所述,N点的DFT的复乘次数等于。显然,把N点的DFT分解为几个较短的DFT,可是乘法的次数大大减少。另外,旋转因子具有明显的周期性和对称性,其周期为:其对称性表现为:或FFT算法就是不断地把长序列的DFT分解成几个短序列的DFT,并利用的周期性和对称性来减少DFT的运算次数。具有以下固有特性:(1)的周期性:(2)的对

7、称性:(3)的可约性:另外,。利用的上述特性,将x(n)或X(k)序列按一定规律分解成短序列进行运算,这样可以避免大量的重复运算,提高计算DFT的运算速度。算法形式有很多种,但基本上可以分为两大类,即按时间抽取(DecimationInTime,DIT)FFT算法和按频率抽取(DecimationInFrequency,DIF)FFT算法。2.2基-2FFT算法如果序列x(n)的长度,其中M是整数(如果不满足此条件,可以人为地增补零值点来达到),在时域上按奇偶抽取分解成短序列的DFT,使最小DFT运算单元为

8、2点。通常将FFT运算中最小DFT运算单元称为基(radix),因而把这种算法称为基-2时间抽取FFT(DIT-FFT)算法[4]。将x(n)按n为奇偶分解成两个子序列,当n为偶数时,令n=2r;当n为奇数时,令n=2r+l;可得到(3)则其DFT可写成(4)和均分别是N/2点序列和的DFT,而且r与k的取值满足0,1,…,N/2-1。而X(k)是一个N点的DFT,因此式(4)只计算了X(k)的前N/2的值。由D

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。