欢迎来到天天文库
浏览记录
ID:36602186
大小:361.60 KB
页数:31页
时间:2019-05-09
《spss计量资料的统计描述》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章集中趋势和离散趋势(计量资料的统计描述)1主要内容频数表集中趋势离散趋势正态分布正常值范围估计2原始资料3一.频数表频数:当汇总大量的原始数据时,把数据按类型分组,其中每个组的数据个数,称为该组的频数。频数表(频数分布):表示各组及它们对应的组频数的表格称为频数表或频数分布。41998年100名18岁健康女大学生身高的频数分布身高组段(1)划记频数f(2)154~112156~11114158~11111,11111,111160~11111,11111,11113162~11111,11111,11111,11111,1122164~11111,11111,11111,1
2、11119166~11111,11111,1111115168~11111,11119170~11114172~17411合计1005频数表的编制1.求全距(R):R=最大值–最小值=173.6–154.7=18.9(cm)2.确定组数:通常8~15组计算组距(i)i=R/组数i=18.9/10=1.89cm取整数2cm所以,i=2cm3.确定组段:第一组段包括最小值,如本例为154最后组段包括最大值,如本例172~1744.列表划记6频数分布的两个特征:集中趋势与离散趋势频数分布的类型:对称分布与偏态分布(集中位置偏向小的一侧叫正偏态,反之叫负偏态)频数表的主要用途:1.
3、揭示分布类型2.发现特大值和特小值3.计算集中趋势指标与离散趋势指标78910二、集中位置的描述常用几种平均值:1.算术均数2.几何均数3.中位数常用平均值来描述。平均值是一组数据典型或有代表性的值。由于这样典型的值趋向于落在根据数据大小排列的数据的中心,因此可以用于度量集中位置(位置指标)111.算术均数(均数)意义:一组性质相同的观察值在数量上的平均水平。表示(总体)X(样本)计算:直接法、间接法、计算机特征:∑(X-X)=0估计误差之和为0。应用:正态分布或近似正态分布注意:合理分组,才能求均数,否则没有意义。12100名18岁女大学生身高均数的计算(加权法)身高组段(1
4、)频数f(2)组中值X(3)f·X(4)154~2155310156~4157628158~111591749160~131612093162~221633586164~191653135166~151672505168~91691521170~4171684172~1741173173合计∑f=100∑f·X=1638132.几何均数意义:N个数值的乘积开N次方即为这N个数的几何均数。表示:G计算:应用:原始数据分布不对称,经对数转换后呈对称分布的资料。例如抗体滴度。143.中位数、百份位数意义:将一组观察值从小到大排序后,居于中间位置的那个值或两个中间值的平均值。将N个观察值
5、从小到大依次排列,再分成100等份,对应于X%位的数值即为第X百分位数。中位数是百分位的特殊形式。同样的例子还有四分位数、十分位数等。表示:M、PX计算:应用:偏态资料,开口资料15三、离散程度的描述描述一组数据参差不齐的程度全距四分位数间距方差标准差变异系数161.全距、四分位数间距R:见上。Q:上四分位数(P75)Qu与下四分位数Ql(P25)之差,包含了全部观察值的一半。172.标准差相关概念:离均差、离均差平方和、方差(2S2)标准差的符号:S标准差的意义:全面反映了一组观察值的变异程度.(越大说明围绕均数越离散,反之说明较集中在均数周围,均数代表性越好)标准差的计算
6、(公式):标准差的应用:描述变异程度、计算标准误、计算变异系数、描述正态分布、估计正常值范围183.变异系数意义:标准差与均数之比用百分数表示。符号:CV计算:CV=(S/X)100%无单位应用:单位不同的多组数据比较均数相差悬殊的多组资料19四、正态分布1、图形2、特征3、面积201、正态分布的图形21正态分布222、正态分布的特征均数处最高;均数为中心对称;2个参数N(u,)正态分布的特殊形式:标准正态分布N(0,1);标准正态变换(变换公式);例题:一次统计测验的平均分是72,标准差是15,求60分、93分、72分的标准分数。曲线下的面积有一定规律。233、曲线下面积2
7、4正态曲线下的面积特点P117为标准正态分布下的面积横轴上曲线下的面积为1曲线下,横轴上对称于0的面积相等从-到μ;u,已知时,进行标准正态变换再查表u,未知时,用样本的均数和标准差代替95%,99%的面积公式:25定义:又称参考值范围,是指特定健康人群的解剖、生理、生化等各种数据的波动范围。习惯上是确定包括95%的人的界值。单双侧:根据指标的实际用途,有的指标有上下界值,过高过低均属异常;某些指标过高为异常,只需确定上限;某些指标过低为异常,只需确定下限。估计的方法
此文档下载收益归作者所有