欢迎来到天天文库
浏览记录
ID:36566189
大小:2.50 MB
页数:70页
时间:2019-05-12
《基于MP的宽带LFM信号参数估计快速算法和阵列误差校正》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、西南交通大学硕士学位论文基于MP的宽带LFM信号参数估计快速算法和阵列误差校正姓名:房黎黎申请学位级别:硕士专业:信号与信息处理指导教师:王建英20080601西南交通大学硕士研究生学位论文第Ⅱ页号参数估计的速度。最后,通过大量的实验仿真给出了快速算法的速度分析比较,证明了算法的有效性。4.研究了不同种类的阵列误差,研究了几种目前已有的误差校正方法,针对均匀线阵中幅相误差的估测会因阵列的特殊结构而导致部分误差无法精确估测这一问题,本章提出了一种用粒子群算法估测均匀线阵幅相误差的方法,可对幅相误差进行较为准确的估测,通过修正导向矢
2、量,可以得到准确的信源到达方向。实验仿真结果证明了算法的有效性和可行性。关键词宽带线性调频信号:频率估计;遗传算法:粒子群算法;误差校正西南交通大学硕士研究生学位论文第1Ⅱ页AbstractThestudyonthefollowingthreeaspectshasimportantsignificanceinsignalanalysisandsignalprocessing:(1)themethodofsignaldenotationandthedecomposition(2)fastalgorithmofsignaldecom
3、position.(3)signaldenotationintheapplicationsofsignalprocessing。Thesignalsparsedecompositionmethodisarecentandconcisedenotationanddecompositionmethod.Ithasgreatresearchvalueandbroadapplicationprospects.Theapplicationsofsignalsparsedecompositioniswidelyregarded,howeve
4、rthecomputationalcomplexityofthatisveryhigh,whichbecomeakeyfactorinimpedingitsdevelopment.Topromotetheresearchandapplicationofsignalsparsedenotationandsignalsparsedecomposition,itisnecessarytostudythefastalgorithm.Otherwise,signalsparsedenotationanddecompositioncailn
5、otbepractical,itCanonlyremaininthesearchingphases.ThisthesisappliesgeneticalgorithmandparticleswarmoptimizationalgorithmtoparameterestimationofwidcbandLFMsignal,andproposestwodifferentlyfastalgorithmtotheestimatedfrequency,oneisusingthehyb—dPSO(DS—PSO)algorithmwhichi
6、sbasedondirectsearchmethodandparticleswarmoptimizationby,andtheotherisusingthehybridoptimization(GA—PSO)algorithmonthebasisofgeneticalgorithmandparticleswarmoptimization.Meanwhile,itwillgreatlyimprovethespeedoftheparameterestimationofLFMsignalwhenthetwofastalgorithms
7、oftheestimatedfrequencyarecombinedwithsectorsestimationalgorithmforestimatingthesignalDOA.Sincethearraymanifoldhasunavoidableerrorsinpractice,theparameterestimationperformanceCanbeaffected.ThisthesisproposesanovelalgorithmbasedonthePSOalgorithmfortheestimationofunifo
8、rmlineararraygainandphaseuncertainties。Themainworkandcontributionsofthedissertationareintheseveralaspectsasfollows:1。Detaillydescri
此文档下载收益归作者所有