欢迎来到天天文库
浏览记录
ID:36536360
大小:41.00 KB
页数:3页
时间:2019-05-11
《二次函数 (4)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《二次函数》复习课知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、一元二次方程与抛物线的结合与应用。4、利用二次函数解决实际问题。技能目标:培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。复习重、难点:函数综合题型复习方法:自主探究、合作交流复习过程:一、知识梳理(学生独立练习,分小组批
2、改)1、二次函数解析式的三种表示方法:(1)顶点式:(2)交点式:(3)一般式:2、填表:抛物线对称轴顶点坐标开口方向y=ax2当a>0时,开口当a<0时,开口y=ax2+ky=a(x-h)2y=a(x-h)2+ky=ax2+bx+c3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此
3、时函数有最值自评分(每空4分,共100分)(说明:用自评打分的方法,不仅让学生复习了前面的知识,而且能激发学生的学习兴趣,提高课堂对的注意力。)二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)1、已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:(1)abc(2)b2-4ac(3)2a+b(4)a+b+c2、已知抛物线y=x2+(2k+1)x-k2+k(1)求证:此抛物线与x轴总有两个不同的交点;(2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满
4、足x12+x22=-2k2+2k+1,①求抛物线的解析式②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。(说明:让学生先独立思考,能激发起学生的挑战性和注意力;合作交流则能照顾到后进同学,让他们在同学的帮助下在课堂上有所收获。)三、归纳小结:提问:通过本节课的练习,你学到了什么知识?(说明:通过提问的形式,能集中学生的注意力,提高学生的总结能力)四、用数学(利用二次函数解决实际问题)一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的
5、水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,(1)根据题意建立直角坐标系,并求出抛物线的解析式。(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?(此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣和提高注意力;同时培养了学生把实际问题抽象成数学模型的能力。)五、课后作业::已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点
6、A(x1,0),B(x2,0),(x1≠x2)(1)求a的取值范围,并证明A、B两点都在原点的左侧;(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。
此文档下载收益归作者所有