欢迎来到天天文库
浏览记录
ID:36531232
大小:77.38 KB
页数:5页
时间:2019-05-11
《专题二第2讲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、江苏省镇江第一中学高三二轮复习教案第4课时 函数的应用【教学目标】1.函数零点所在区间、零点个数及参数的取值范围2.函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.【自主梳理】1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y
2、=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.【课堂活动】热
3、点一 函数的零点例1 (1)函数f(x)=ln(x+1)-的零点所在的区间是( )江苏省镇江第一中学高三二轮复习教案A.(,1)B.(1,e-1)C.(e-1,2)D.(2,e)(2)(2014·辽宁)已知f(x)为偶函数,当x≥0时,f(x)=则不等式f(x-1)≤的解集为( )A.[,]∪[,]B.[-,-]∪[,]C.[,]∪[,]D.[-,-]∪[,] (1)已知函数f(x)=()x-cosx,则f(x)在[0,2π]上的零点个数是( )A.1B.2C.3D.4(2)已知a是函数f(x)=2x-logx的零点,若04、f(x0)>0C.f(x0)<0D.f(x0)的符号不确定热点二 函数的零点与参数的范围例2 对任意实数a,b定义运算“⊗”:a⊗b=设f(x)=(x2-1)⊗(4+x),若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是( )A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1) 定义在R上的函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(-1,1),若方程3a(f(x))2+2bf(x)+c=0恰有6个不同的实根,则实数a的取值范围是________.江苏省镇江第一中学高三二轮复习教案热点三 函数的实际应用问题例3 省环保研究所对市中心每天环境放5、射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=6、-a7、+2a+,x∈[0,24],其中a是与气象有关的参数,且a∈[0,],若用每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).(1)令t=,x∈[0,24],求t的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标? 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(万元)8、关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)1.函数与方程江苏省镇江第一中学高三二轮复习教案(1)函数f(x)有零点⇔方程f(x)=0有根⇔函数f(x)的图象与x轴有交点.(2)函数f(x)的零点存在性定理如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)·f(b)<0,那么,函数f(x)在区间(a,b)内有零点,即存在c∈(a,b),使f(c)=0.①如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且函数f(x)在区间[a,b]上是一个单调函数,那么当f(9、a)·f(b)<0时,函数f(x)在区间(a,b)内有唯一的零点,即存在唯一的c∈(a,b),使f(c)=0.②如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)·f(b)>0,那么,函数f(x)在区间(a,b)内不一定没有零点.2.函数综合题的求解往往应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.要认真分析,处理好各种关系,把握
4、f(x0)>0C.f(x0)<0D.f(x0)的符号不确定热点二 函数的零点与参数的范围例2 对任意实数a,b定义运算“⊗”:a⊗b=设f(x)=(x2-1)⊗(4+x),若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是( )A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1) 定义在R上的函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(-1,1),若方程3a(f(x))2+2bf(x)+c=0恰有6个不同的实根,则实数a的取值范围是________.江苏省镇江第一中学高三二轮复习教案热点三 函数的实际应用问题例3 省环保研究所对市中心每天环境放
5、射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=
6、-a
7、+2a+,x∈[0,24],其中a是与气象有关的参数,且a∈[0,],若用每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).(1)令t=,x∈[0,24],求t的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标? 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(万元)
8、关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)1.函数与方程江苏省镇江第一中学高三二轮复习教案(1)函数f(x)有零点⇔方程f(x)=0有根⇔函数f(x)的图象与x轴有交点.(2)函数f(x)的零点存在性定理如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)·f(b)<0,那么,函数f(x)在区间(a,b)内有零点,即存在c∈(a,b),使f(c)=0.①如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且函数f(x)在区间[a,b]上是一个单调函数,那么当f(
9、a)·f(b)<0时,函数f(x)在区间(a,b)内有唯一的零点,即存在唯一的c∈(a,b),使f(c)=0.②如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)·f(b)>0,那么,函数f(x)在区间(a,b)内不一定没有零点.2.函数综合题的求解往往应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.要认真分析,处理好各种关系,把握
此文档下载收益归作者所有