高中数学_排列组合复习课件

高中数学_排列组合复习课件

ID:36513664

大小:619.00 KB

页数:15页

时间:2019-05-09

高中数学_排列组合复习课件_第1页
高中数学_排列组合复习课件_第2页
高中数学_排列组合复习课件_第3页
高中数学_排列组合复习课件_第4页
高中数学_排列组合复习课件_第5页
资源描述:

《高中数学_排列组合复习课件》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、排列组合解题技巧综合复习教学目的教学过程课堂练习课堂小结制作者:许会欣1.熟悉解决排列组合问题的基本方法;2.让学生掌握基本的排列组合应用题的解题技巧;3.学会应用数学思想分析解决排列组合问题.一复习引入二新课讲授排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧.例题1例题6例题5例题4例题3例题2从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元

2、素中取出m个元素的一个组合.3.排列数公式:4.组合数公式:1.排列的定义:排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.例1学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法.根据乘法原理,共有的不同坐法为种.结论1插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排

3、好元素的空档之中即可.分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.例25个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法.结论2捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.分析此题涉及到的是排队问题,

4、对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.例3在高二年级中的8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?解此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种.结论3转化法(插拔法):对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.分析此题

5、若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.例4袋中有不同的5分硬币23个,不同的1角硬币10个,如果从袋中取出2元钱,有多少种取法?解把所有的硬币全部取出来,将得到0.05×23+0.10×10=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有种取法.结论4剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.分析此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,

6、也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.例5期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?解不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种.结论5对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一.在求解中只要求出全体,就可以得到所求.分析对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因

7、此要求其中的某一种情况,能够得到全体,那么问题就可以解决了.并且也避免了问题的复杂性.例6某班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?解43人中任抽5人的方法有种,正副班长,团支部书记都不在内的抽法有种,所以正副班长,团支部书记至少有1人在内的抽法有种.结论6排除法:有些问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除.分析此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但

8、容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.练习:有12个人,按照下列要求分配,求不同的分法种数.(1)分为两组,一组7人,一组5人;(2)分为甲、乙两组,甲组

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。