欢迎来到天天文库
浏览记录
ID:36512984
大小:185.00 KB
页数:3页
时间:2019-05-11
《§2.4等比数列》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.canpoint.cn课题:§2.4等比数列授课类型:新授课(第2课时)●教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。●教学重点等比中项的理解与应用●教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等比数列
2、:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:=q(q≠0)2.等比数列的通项公式:,3.{}成等比数列=q(,q≠0)“≠0”是数列{}成等比数列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列Ⅱ.讲授新课1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G=ab,则,即a,G,b成等比数列。∴a,G,b成等比数列G=ab(a
3、·b≠0)[范例讲解]课本P58例4证明:设数列的首项是,公比为;的首项为,公比为,那么数列的第n项与第n+1项分别为:www.canpoint.cn010-5881806758818068canpoint@188.com第3页共3页www.canpoint.cn它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{}与{},数列{}也一定是等比数列吗?探究:设数列{}与{}的公比分别为,令,则,所以,数列{}也一定是等比数列。课本P59的练习4已知数列{}是等比数列,(1)是否成立?成立吗?为什么?(2)是否成立?你据此能得到什么结论?是否成立
4、?你又能得到什么结论?结论:2.等比数列的性质:若m+n=p+k,则在等比数列中,m+n=p+q,有什么关系呢?由定义得:,则Ⅲ.课堂练习课本P59-60的练习3、5Ⅳ.课时小结1、若m+n=p+q,2、若是项数相同的等比数列,则、{}也是等比数列Ⅴ.课后作业www.canpoint.cn010-5881806758818068canpoint@188.com第3页共3页www.canpoint.cn课本P60习题2.4A组的3、5题●板书设计●授后记www.canpoint.cn010-5881806758818068canpoint@188.com第3页共3页
此文档下载收益归作者所有