欢迎来到天天文库
浏览记录
ID:36491257
大小:478.00 KB
页数:29页
时间:2019-05-09
《粒子群算法简介优缺点与应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2021/8/51粒子群算法2021/8/52粒子群算法的研究背景粒子群算法(ParticleSwarmOptimization,简称PSO),是一种基于群体智能的进化计算方法。PSO由Kennedy和Eberhart博士于1995年提出。粒子群算法源于复杂适应系统(ComplexAdaptiveSystem,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样
2、性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。2021/8/53PSO的基本概念源于对鸟群捕食行为的研究:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有鸟都不知道食物在哪里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。粒子群算法的基本原理2021/8/54PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。在PSO中,把一个优化问题看作是在空中觅食的鸟群,那么“食物”就是优化问题的最优解,而在空中飞行的每一只觅食的“鸟”就是PSO算法中在解空间中进行搜索
3、的一个“粒子”(Particle)。“群”(Swarm)的概念来自于人工生命,满足人工生命的五个基本原则。因此PSO算法也可看作是对简化了的社会模型的模拟,这其中最重要的是社会群体中的信息共享机制,这是推动算法的主要机制。2021/8/55粒子在搜索空间中以一定的速度飞行,这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整。所有的粒子都有一个被目标函数决定的适应值(fitnessvalue),这个适应值用于评价粒子的“好坏”程度。每个粒子知道自己到目前为止发现的最好位置(particlebest,记为pbest)和当前的位置,pbest就是粒子本身找到的最优解,这个可以看作是粒子自己的飞
4、行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(globalbest,记为gbest),gbest是在pbest中的最好值,即是全局最优解,这个可以看作是整个群体的经验。2021/8/56每个粒子使用下列信息改变自己的当前位置:(1)当前位置;(2)当前速度;(3)当前位置与自己最好位置之间的距离;(4)当前位置与群体最好位置之间的距离。2021/8/57用随机解初始化一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值”来更新自己:一个是粒子本身所找到的最好解,即个体极值(pbest),另一个极值是整个粒子群中所有粒子在历代搜索过程中所达
5、到的最优解(gbest)即全局极值。找到这两个最好解后,接下来是PSO中最重要的“加速”过程,每个粒子不断地改变其在解空间中的速度,以尽可能地朝pbest和gbest所指向的区域“飞”去。粒子群算法的基本思想2021/8/58假设在一个N维空间进行搜索,粒子i的信息可用两个N维向量来表示:第i个粒子的位置可表示为速度为在找到两个最优解后,粒子即可根据下式来更新自己的速度和位置:粒子群优化算法的一般数学模型:是粒子i在第k次迭代中第d维的速度;:是粒子i在第k次迭代中第d维的当前位置;(1)(2)2021/8/59i=1,2,3…,M:种群大小。c1和c2:学习因子,或称加速系数,合适的c1和
6、c2既可加快收敛又不易陷入局部最优。rand1和rand2:是介于[0,1]之间的随机数。是粒子i在第d维的个体极值点的位置;是整个种群在第d维的全局极值点的位置。最大速度vmax:决定了问题空间搜索的力度,粒子的每一维速度vid都会被限制在[-vdmax,+vdmax]之间,假设搜索空间的第d维定义为区间[-xdmax,+xdmax],则通常vdmax=kxdmax,0.1k1.0,每一维都用相同的设置方法。2021/8/510公式(1)主要通过三部分来计算粒子i更新的速度:粒子i前一时刻的速度;粒子当前位置与自己历史最好位置之间的距离;粒子当前位置与群体最好位置之间的距离。粒子通过公
7、式(2)计算新位置的坐标。更新公式的意义2021/8/511式(1)的第一部分称为动量部分,表示粒子对当前自身运动状态的信任,为粒子提供了一个必要动量,使其依据自身速度进行惯性运动;第二部分称为个体认知部分,代表了粒子自身的思考行为,鼓励粒子飞向自身曾经发现的最优位置;第三部分称为社会认知部分,表示粒子间的信息共享与合作,它引导粒子飞向粒子群中的最优位置。公式(1)的第一项对应多样化(diversificat
此文档下载收益归作者所有