资源描述:
《粒子群算法(1)----粒子群算法简介》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、粒子群算法(1)----粒子群算法简介二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数 y=1-cos(3*x)*exp(-x)的在[0,4]
2、最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物 计算两个点函数值就是粒子群算法中的适应值,计
3、算用的函数就是粒子群算法中的适应度函数。 更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化第一次更新位置 第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。粒子群算法(2)----标准的粒子群算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0,
4、4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5;x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况--x为一个矢量的情况,比如二维的情况 z=2*x1+3*x22的情况。这个时候我们的每个粒子为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q,这样在这个种群中有n个粒子,每个粒子为q维。 由n个粒子组成的群体对Q维(就是每个粒子
5、的维数)空间进行搜索。每个粒子表示为:xi=(xi1,xi2,xi3,...,xiQ),每个粒子对应的速度可以表示为vi=(vi1,vi2,vi3,....,viQ),每个粒子在搜索时要考虑两个因素: 1。自己搜索到的历史最优值pi,pi=(pi1,pi2,....,piQ),i=1,2,3,....,n。 2。全部粒子搜索到的最优值pg,pg=(pg1,pg2,....,pgQ),注意这里的pg只有一个。 下面给出粒子群算法的位置速度更新公式: 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到: 它们是:是保持原来速度的系数,所以叫
6、做惯性权重。是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。是[0,1]区间内均匀分布的随机数。是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。 这样一个标准的粒子群算法就结束了。 下面对整个基本的粒子群的过程给一个简单的图形表示: 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变
7、自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。粒子群算法(3)----标准的粒子群算法(局部版本) 在全局版的标准粒子群算法中,每个粒子的速度的更新是根据两个因素来变化的,这两个因素是:1.粒子自己历史最优值pi。2. 粒子群体的全局最优值pg。如果改变粒子速度更新公式,让每个粒子的速度的更新根据以下两个因素更新,A.粒子自己历史最优值pi。B.粒子邻域内粒子的最优值pnk。其余保持跟全局版的标准粒子群算法一样,这个算法就变为局部版的粒子群算法。 一般一个粒子i的邻域随着迭代次数的增加而逐渐增加,开始第一次迭代,它的邻域为0,随着迭代次数邻域线
8、性变大,最后邻域扩展到整个粒子群,这时