欢迎来到天天文库
浏览记录
ID:36459749
大小:2.08 MB
页数:71页
时间:2019-05-10
《BP神经网络在大型斜拉桥施工控制中的应用研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、河海大学硕士学位论文BP神经网络在大型斜拉桥施工控制中的应用研究姓名:于涛申请学位级别:硕士专业:大地测量学与测量工程指导教师:黄张裕;赵仲荣20070401AbstractWitllthefastdevelopmentofthetransportationbusinessandtheunremittinglytechniqueofbridgeconstruction,bridgeconstructiontoacrossthedegree,highlydifficultdirectiondevel
2、opmentgreatly,structuresupple,beautyandsafetyofcable-stayedbridgegraduallydriveextensiveadoption.ConstructioncontrolisanimportantpartofcaMe-stayedbridgeconstructiontechnique;itisakeytomakeSUretheconstructionqualityofbridge.Soitisanimportantworktocable
3、-stayedbridge’Sconstructioncontr01.Factorsthataffectconstructioncontrolmanyandcomplex,andtheseinformationindependenteachother.Howwillvalidexploitationistheseinformation,combinemodernmathematicstheories,builduprelatedsupervisionmodelandealTyonavalidcon
4、structioncontrol,isthemaincontentsofthistextresearch.Thefulltextcombinedwimthecharacteristicsoflargecable-stayedbridgeconstruction,researchtheartificialneuralnetworkusedtoconstructioncontrol,worksmainlydidasfollows:(1)wimtheanalyticalanddiscussionofth
5、ebasicprincipletotheartificialneuralnetwork,fromtheories,thearticleexpoundsandprovedthepossibilityoftheneuralnetworkmethodusedtoconstructioncontr01.Inthisfoundationtop,thefactorsthatinfluencecable—stayedbridge’sconstructioncontrolanditsinteractionrela
6、tionareresearched.(2)AtthefoundationofanalyticaloftheblemishmatBPstudycalculateswayexistentinphysicallyapplied,giveahomologousimprovementmethod.CombineananalyticalresulttoestablishamodelthatinkeepingwimtheBPartificialneuralnetwork,topredicttheformedge
7、aringlinecontrolofthesteelboxofcabled-bridge.(3)Aimatagreaterproblemoftheconstructiondataunitandthequantityclassdifference,theadoptionamethodofdatareturnonturning,andovercametheclassbaddatawhichinfluenceoftheastringencydisadvantagetothenetworkfromthes
8、elf-study.(4)Combinetheexampletheell百neeringofthethirdNanjingYangtzeRiverBridge,drawledupthelineformcontrolpredictionprocedurewiththeMATLABprocedurelanguage,obtainedagoodresult.(5)Comparethegraytheoriespredictionandtheneuralnetworkmethodpredic
此文档下载收益归作者所有