欢迎来到天天文库
浏览记录
ID:36375894
大小:287.00 KB
页数:7页
时间:2019-05-10
《2019-2020年人教A版必修2《空间几何体及点、线、面的位置关系》回扣验收特训(一)含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com2019-2020年人教A版必修2《空间几何体及点、线、面的位置关系》回扣验收特训(一)含答案1.(北京高考)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4+C.2+2D.5解析:选C 作出三棱锥的示意图如图,在△ABC中,作AB边上的高CD,连接SD.在三棱锥SABC中,SC⊥底面ABC,SC=1,底面三角形ABC是等腰三角形,AC=BC,AB边上的高CD=2,AD=BD=1,斜高SD=,AC=BC=.∴S表=S△ABC+S△SAC+S△SBC+S△SAB=×2×2+×1×+×1×+×2×=2+2.2.下列命题中假命题是(
2、 )A.垂直于同一条直线的两条直线相互垂直B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行解析:选A 垂直于同一条直线的两条直线可能平行、相交或异面,A错误;选A.3.已知m,n是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若m⊂α,n⊂β,m∥n,则α∥β;③若α⊥γ,β⊥γ,则α∥β;④若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β.其中真命题是( )
3、A.①③B.①②C.③④D.①④解析:选D 对于①垂直于同一条直线的两个平面平行,正确;对于②不满足平面与平面平行的判断定理,错误;对于③平面α,β可能相交,错误;对于④满足平面α与平面β平行,正确.4.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图的是( )解析:选D 该三棱锥是由三条交于一点且两两垂直,长度分别为1,2,3的棱构成的.由于不同的放置方式其三视图可为A,B,C中的情况.D选项中侧视图错误,故选D.5.某几何体的三视图如图所示,则该几何体的体积为( )A. B.πC.D.2π解析:选A 由三视图可知该几何体的直观图为一个圆柱内挖去两个与
4、圆柱同底的半球,所以该几何体的体积V=V柱-2V半球=π×12×2-2×××13=,选A.6.如图,三棱锥VABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,则下列结论中不一定成立的是( )A.AC=BCB.VC⊥VDC.AB⊥VCD.S△VCD·AB=S△ABC·VO解析:选B 因为VA=VB,AD=BD,所以VD⊥AB.因为VO⊥平面ABC,AB⊂平面ABC,所以VO⊥AB.又VO∩VD=V,所以AB⊥平面VCD.又CD⊂平面VCD,VC⊂平面VCD,所以AB⊥VC,AB⊥CD.又AD=BD,所以AC=BC(线段垂直平分线的性质).因为VO⊥平面ABC,所以VVABC=
5、S△ABC·VO.因为AB⊥平面VCD,所以VVABC=VBVCD+VAVCD=S△VCD·BD+S△VCD·AD=S△VCD·(BD+AD)=S△VCD·AB,所以S△ABC·VO=S△VCD·AB,即S△VCD·AB=S△ABC·VO.综上知,A,C,D正确.7.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出平面ABC∥平面MNP的图形序号是________(写出所有符合要求的图形序号).解析:由面面平行的判定定理可得.答案:①②8.已知四面体ABCD的棱都相等,G为△ABC的重心,则异面直线AG与CD所成角的余弦值为________.解析:设
6、四面体ABCD的棱长为a,延长AG交BC于E,取BD的中点F,连接EF,AF.由题意知E为BC的中点,所以CD∥EF,所以∠AEF即异面直线AG与CD所成的角.由题意知AE=AF=a,EF=a,则在△AEF中,cos∠AEF==.答案:9.如图,三棱锥VABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其正视图的面积为,则其侧视图的面积为________.解析:由题意知,该三棱锥的正视图为△VAC,作VO⊥AC于O,连接OB,设底面边长为2a,高VO=h,则△VAC的面积为×2a×h=ah=.又三棱锥的侧视图为Rt△VOB,在正三角形ABC中,高OB=a,所以侧视图的面积为O
7、B·OV=×a×h=×=.答案:10.如图,已知△ABC是正三角形,EA,CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.证明:(1)取AB的中点M,连接FM,MC.∵F,M分别是BE,BA的中点,∴FM∥EA,FM=EA=a.∵EA,CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM.又∵DC=a,∴FM=DC,∴四边形FMCD是平行四边形,∴FD∥MC.
此文档下载收益归作者所有