资源描述:
《12.3.2 角平分线的性质2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.3.2角平分线的性质(2)PCPCP到OA的距离P到OB的距离角平分线上的点几何语言:∵OC平分∠AOB,且PD⊥OA,PE⊥OB∴PD=PE角的平分线上的点到角的两边的距离相等。角平分线的性质:不必再证全等ODEPACB反过来,到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?P思考已知:如图,PD⊥OA,PE⊥OB,点D、E为垂足,PD=PE.求证:点P在∠AOB的平分线上PC证明:经过点P作射线OC∵PD⊥OA,PE⊥OB∴∠PDO=∠PEO=90°在Rt△PDO和Rt△PEO中PO=
2、POPD=PE∴Rt△PDO≌Rt△PEO(HL)∴∠POD=∠POE∴点P在∠AOB的平分线上已知:如图,PD⊥OA,PE⊥OB,点D、E为垂足,PD=PE.求证:点P在∠AOB的平分线上.PC角的内部到角的两边的距离相等的点在角的平分线上。∵PD⊥OA,PE⊥OB,PD=PE.∴OP平分∠AOB.用数学语言表示为:角平分线性质的逆定理(角平分线的判定)小结角的平分线的性质图形已知条件结论PCPCOP平分∠AOBPD⊥OA于DPE⊥OB于EPD=PEOP平分∠AOBPD=PEPD⊥OA于DPE⊥OB于E
3、角的平分线的判定归纳、比较如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?(比例尺为1︰20000)思考DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求。∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理,PE=PF.∴PD=PE=PF.即点P到三边AB、BC、CA的距离相等.证明:过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,知识运用如图,△ABC的角平分线BM,CN相交于点P。求证:点P到三边AB、BC
4、、CA的距离相等DPMNABCFE想一想,点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M,GHM∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC,∴FG=FM.又∵点F在∠CBD平分线上,FH⊥AD,FM⊥BC.∴FM=FH.∴FG=FH,∴点F在∠DAE的平分线上.如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.课堂练习
5、如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处?画出它的位置.课堂练习ABCEFD如图,△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF。求证:AD是△ABC的角平分线课堂练习在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,下面给出三个结论(1)DA平分∠EDF;(2)AE=AF;(3)AD上的点到B、C两点的距离相等,其中正确的结论有()课堂练习ABCEFD已知:如图,在△ABC
6、中,BD=CD,∠1=∠2.求证:AD平分∠BACDEFABC12课堂练习已知:BD⊥AC于点D,CE⊥AB于点E,BD,CE交点F,CF=BF,求证:点F在∠A的平分线上.DEFCA课堂练习B归纳在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。1、角平分线的判定:2、三角形角平分线的交点性质:三角形的三条角平分线交于一点。3、角的平分线的辅助线作法:见角平分线就作两边垂线段。如图,BE⊥AC于E,CF⊥AB于F,BE、CF相交于D,BD=CD。求证:AD平分∠BACABCFED课堂练习如图
7、,D,E,F分别是△ABC三边上的点,CE=BF,△DCE和△DBF的面积相等,DH⊥AB于H,DG⊥AC于G.求证:AD平分∠BAC.课堂练习如图,O是三条角平分线的交点,OD⊥BC于D,OD=3,△ABC的周长为15,求S△ABCABCOMNGD课堂练习如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC。求证:AM平分∠DABDABCM课堂练习