欢迎来到天天文库
浏览记录
ID:36369427
大小:69.50 KB
页数:4页
时间:2019-05-10
《《3.4.1函数与方程(2)》同步练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《3.4.1函数与方程(2)》同步练习1.已知函数f(x)=x3+x2-2x-2,f(1)·f(2)<0,用二分法逐次计算时,若x0是[1,2]的中点,则f(x0)=________.2.下列图象与x轴均有交点,其中能用二分法求函数零点的是________.(填序号)3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2007)<0,f(2008)<0,f(2009)>0,则下列叙述正确的是________.(填序号)①函数f(x)在(2007,2008)内不存在零点;②函数f(x)在(2008,2009)内
2、不存在零点;③函数f(x)在(2008,2009)内存在零点,并且仅有一个;④函数f(x)在(2007,2008)内可能存在零点.4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间________.5.函数f(x)=x3-x2-x+1在[0,2]上的零点有____个.6.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则下列各式中正确的是________.(填序
3、号)①f(x1)<0,f(x2)<0;②f(x1)<0,f(x2)>0;③f(x1)>0,f(x2)<0;④f(x1)>0,f(x2)>0.7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)①(-∞,1];②[1,2];③[2,3];④[3,4];⑤[4,5];⑥[5,6];⑦[6,+∞).x123456f(x)136.12315.542-3.93010.678-50.667-305.6788.用“二分法”求方程x3-2x-5=0在区间[2,3]
4、内的实根,取区间中点为x0=2.5,那么下一个有根的区间是________.9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.70)>0,f(0.6875)<0,即可得出方程的一个近似解为____________(精确到为0.1).10.确定函数f(x)=x+x-4的零点所在的区间.11.设函数g(x)=-6x3-13x2-12x-3.(1)证明:g(x)在区间(-1,0)内有一个零点;(2)求出函数g(x)在(-1,0)内的零点(精确到0.1).12.下列是关于函数y
5、=f(x),x∈[a,b]的命题:①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.那么以上叙述中,正确的个数为________.13.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?答案1.0.625解析 由题意
6、知f(x0)=f()=f(1.5),代入解析式易计算得0.625.2.②③④解析 由①中的图象可知,不存在一个区间(a,b),使f(a)·f(b)<0,即①中的零点不是变号零点,不符合二分法的定义.3.④4.(1.25,1.5)解析 ∵f(1)·f(1.5)<0,x1==1.25.又∵f(1.25)<0,∴f(1.25)·f(1.5)<0,则方程的根落在区间(1.25,1.5)内.5.1解析 f(x)=(x-1)2(x+1)=0,x1=1,x2=-1,故f(x)在[0,2]上有一个零点.6.②解析 ∵f(x)=2x
7、-,f(x)由两部分组成,2x在(1,+∞)上单调递增,-在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1x0,∴f(x2)>f(x0)=0.7.③④⑤8.[2,2.5)解析 令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,f(2.5)=15.625-10=5.625>0.∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).9.0.7解析 因为0.70与0.6875精确到0.1的近似值都为0.7.10.解 (答案
8、不唯一)设y1=x,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象,如图.由图知,y1与y2在区间(0,1)内有一个交点,当x=4时,y1=-2,y2=0,f(4)<0,当x=8时,y1=-3,y2=-4,f(8)=1>0,∴在(4,8)内两曲线又有一个交点.故函数f(x)的两零点所在的区间为(0,1),(4,8).11.(1)证明
此文档下载收益归作者所有