欢迎来到天天文库
浏览记录
ID:36358106
大小:382.00 KB
页数:8页
时间:2019-05-10
《2019-2020年中考试数学文含答案 (I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年中考试数学文含答案(I)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.根据偶函数定义可推得“函数在上是偶函数”的推理过程是()A.归纳推理B.类比推理C.演绎推理D.非以上答案3.若,则()A.B.C.D.4.已知等比数列满足,则()A.64B.81C.128D.2435.函数的单调递增区间是()A.B.(0,3)C.(1,4)D.6.在R上定义运算⊗:x⊗y=x(1-y)
2、.若不等式(x-a)⊗(x+a)<1对任意实数x都成立,则( )A.-13、函数满足条件:为事件为A,则事件A发生的概率为()A. B. C. D.11.若直线始终平分圆:的周长,则的最小值为()A.8B.12C.16D.2012.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,则的值为()A.B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中横线上.13.若复数z1=-1,z2=2+i分别对应复平面上的点P、Q,则向量对应的复数是________.14.现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠4、部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______15.若数列{an}中,a1=1,a2=3+5,a3=7+9+11,a4=13+15+17+19,…,则a10=________.16.曲线在点M(,0)处的切线的斜率为________________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i:(1)与复数2-12i相等;(25、)与复数12+16i互为共轭;(3)对应的点在x轴上方.18.(本小题满分12分)某中学共2200名学生中有男生1200名,按男女性别用分层抽样抽出110名学生,询问是否爱好某项运动。已知男生中有40名爱好该项运动,女生中有30名不爱好该项运动。男女总计爱好40不爱好30总计(1)如下的列联表:(2)通过计算说明,是否有99%以上的把握认为“爱好该项运动与性别有关”?参考信息如下:0.0500.0100.001k3.8416.63510.82819.(本小题满分12分)已知数列满足,且.(1)求数列的通项公式;(2)设,求数列的前项和;(36、)设,记,证明:.20.(本小题满分12分)已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。(1)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;(2)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;(3)讨论椭圆C及其“知己圆”的位置关系.21.(本小题满分12分)已知三次函数为奇函数,且在点的切线方程为(1)求函数的表达式;(2)已知数列的各项都是正数,且对于,都有,求数列的首项和通项公式;(3)在(2)的条件下,若数列满足,求数列的最小值.22.(本7、小题满分12分)已知:0<α<,0<β<,且sin(α+β)=2sinα,求证:α<β.参考答案:1-5DCCAD6-10CABAC11-12CB13.3+i14.15.100016.17.(1)根据复数相等的充要条件得解之得m=-1.(2)根据共轭复数的定义得解之得m=1.(3)根据复数z对应的点在x轴上方可得m2-2m-15>0,解之得m<-3或m>5.18.(1)男女总计爱好402060不爱好203050总计6050110(2)>6.63519.(1)由,知数列是首项为1,公差为1的等差数列,∴,∴.(2)由(1)得=∴=--①---8、②①-②得=∴=.(3)由(1)得=∴<1-20.(1)∵椭圆C过点(0,1),由椭圆性质可得:b=1;又∵椭圆C的离心率e=,即,且∴解得∴所求椭圆C的方程为:又∵∴由题意可得
3、函数满足条件:为事件为A,则事件A发生的概率为()A. B. C. D.11.若直线始终平分圆:的周长,则的最小值为()A.8B.12C.16D.2012.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,则的值为()A.B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中横线上.13.若复数z1=-1,z2=2+i分别对应复平面上的点P、Q,则向量对应的复数是________.14.现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠
4、部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______15.若数列{an}中,a1=1,a2=3+5,a3=7+9+11,a4=13+15+17+19,…,则a10=________.16.曲线在点M(,0)处的切线的斜率为________________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i:(1)与复数2-12i相等;(2
5、)与复数12+16i互为共轭;(3)对应的点在x轴上方.18.(本小题满分12分)某中学共2200名学生中有男生1200名,按男女性别用分层抽样抽出110名学生,询问是否爱好某项运动。已知男生中有40名爱好该项运动,女生中有30名不爱好该项运动。男女总计爱好40不爱好30总计(1)如下的列联表:(2)通过计算说明,是否有99%以上的把握认为“爱好该项运动与性别有关”?参考信息如下:0.0500.0100.001k3.8416.63510.82819.(本小题满分12分)已知数列满足,且.(1)求数列的通项公式;(2)设,求数列的前项和;(3
6、)设,记,证明:.20.(本小题满分12分)已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。(1)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;(2)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;(3)讨论椭圆C及其“知己圆”的位置关系.21.(本小题满分12分)已知三次函数为奇函数,且在点的切线方程为(1)求函数的表达式;(2)已知数列的各项都是正数,且对于,都有,求数列的首项和通项公式;(3)在(2)的条件下,若数列满足,求数列的最小值.22.(本
7、小题满分12分)已知:0<α<,0<β<,且sin(α+β)=2sinα,求证:α<β.参考答案:1-5DCCAD6-10CABAC11-12CB13.3+i14.15.100016.17.(1)根据复数相等的充要条件得解之得m=-1.(2)根据共轭复数的定义得解之得m=1.(3)根据复数z对应的点在x轴上方可得m2-2m-15>0,解之得m<-3或m>5.18.(1)男女总计爱好402060不爱好203050总计6050110(2)>6.63519.(1)由,知数列是首项为1,公差为1的等差数列,∴,∴.(2)由(1)得=∴=--①---
8、②①-②得=∴=.(3)由(1)得=∴<1-20.(1)∵椭圆C过点(0,1),由椭圆性质可得:b=1;又∵椭圆C的离心率e=,即,且∴解得∴所求椭圆C的方程为:又∵∴由题意可得
此文档下载收益归作者所有