欢迎来到天天文库
浏览记录
ID:36343141
大小:947.50 KB
页数:28页
时间:2019-05-09
《《一元一次不等式和一元一次不等式组》综合复习课件[1]》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一章一元一次不等式和一元一次不等式组一、知识点总结:1、不等号:表示下等关系的符号称为不等号。一般包括“>”、“<”、“≥”、“≤”、“≠”五种例:用不等号表示下列两数或两式的关系:(1)3____-1;(2)-10____0;(3)2x2_____0;(4)
2、2x
3、______
4、-3x
5、.><≥≤2.不等式:用不等号连接起来的式子.例用适当的符号表示下列关系:(1)a的2倍比8小;(2)y的3倍与1的和大于3;(3).x除以2的商加上2至多为5;(4).a与b两数和的平方不大于2.(5).x与y的差为非正数;(6).a
6、与4的和不小于2.注:列不等式与列等式一样。3.不等到式的基本性质:性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.例:(1).由a0;B.m<0;C.m≤0;D.m≥0.D(2).下列变形中正确的是()A.由ab,得-2+3a>-2+3b;D.由7x>3x-2,得x<-2.C注:在不等式
7、两边都乘以(或除以)同一个整式时,应考虑整式为正数、负数、零三种情况。4、不等式的解:使不等式成立的未知数的值.例:-2是不是不等式2x-1>-3的解?4呢?解:当X=-2时,2x-1=2×(-2)-1=5<-3,即不等式左边<右边,所以x=-2不是不等式2x-1>-3.的解.当x=4时,2x-1=2×4-1=7>-3,即不等式左边>右边,所以x=4是不等式2x-1>-3的解.5、不等式的解集:一个含有未知数的不等式的所有解,组成了这个不等式的解集。例:x<5是不等式3x-5<2x的解集,则下列说法正确的有()个。①5是不
8、等式3x-5<2x的一个解;②0是不等式3x-5<2x的一个解;③x<4也是不等式3x-5<2x的解集;④所有小于4的数都是不等式3x-5<2x的解。剖析:x<5是不等式3x-5<2x的解集,说明任何一个小于5的数都是不等式3x-5<2x的一个解,当然小于4的值也一定是不等式3x-5<2x的解,但x<4不是不等式的解集,因为它不是由不等式的所有解组成的。A.1个;B.2个;C.3个;D.4个.B6、解不等式:求不等式解集的过程其实质就是把不等式化为“x>a或x≥a或xa
9、x0ABCD用数轴表示不等式的一般步骤;(1)画数轴;(2)定界点;(3)定方向.C8、不等式解集中最值问题:对于不等式x≥a的解集有最小值,最小值为x=a;对于不等式x≤a的解集有最大值,最大值为x=a,而不等式x>a的解
10、集没有最小值,x11、于x的方程的解是非负数,求m的取值范围。11.利用方程和一个一次函数的图象求一元一次不等式的解集:一次函数y=kx+b的图象是条直线,kx+b是一元一次方程,其解为直线与x轴的交点的横坐标.kx+b>0,kx+b<0是一元一次不等式,它们分别对应直线x轴上方的部分和直线在x轴下方的部分,相应不等式的解集便是相应的图象对应的所有x值,这种解法较为直观,关键是确定一次函数的图象与x轴的交点.例:作函数y=x+3的图象,并观察图象,回答下列问题:(1).x取何值时,x+3>0?(2).x取何值时,x+3<0?(3).x取何值时,12、x+3>2?y-5-1-2-3-41234x1234-1-212、利用两个一次函数的图象求一元一次不等式的解集:对于两个一次函数y1=k1x+b1和y2=k2x+b2,若y1>y2,则一次函数y1=k1x+b1的图象在一次函y2=k2x+b2的图象的上方,从而找出对应的x的取值范围即可;若y1
11、于x的方程的解是非负数,求m的取值范围。11.利用方程和一个一次函数的图象求一元一次不等式的解集:一次函数y=kx+b的图象是条直线,kx+b是一元一次方程,其解为直线与x轴的交点的横坐标.kx+b>0,kx+b<0是一元一次不等式,它们分别对应直线x轴上方的部分和直线在x轴下方的部分,相应不等式的解集便是相应的图象对应的所有x值,这种解法较为直观,关键是确定一次函数的图象与x轴的交点.例:作函数y=x+3的图象,并观察图象,回答下列问题:(1).x取何值时,x+3>0?(2).x取何值时,x+3<0?(3).x取何值时,
12、x+3>2?y-5-1-2-3-41234x1234-1-212、利用两个一次函数的图象求一元一次不等式的解集:对于两个一次函数y1=k1x+b1和y2=k2x+b2,若y1>y2,则一次函数y1=k1x+b1的图象在一次函y2=k2x+b2的图象的上方,从而找出对应的x的取值范围即可;若y1
此文档下载收益归作者所有