欢迎来到天天文库
浏览记录
ID:36314011
大小:652.50 KB
页数:17页
时间:2019-05-09
《函数的最大(小)值与导数(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数在研究函数中的应用函数的最值与导数(1)知识回顾一般地,设y=f(x)的定义域为I,如果存在实数M满足:1.最大值:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值2.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值观察下列图形,你能找出函数的最值吗?xoyax1by=f(x)x2x3x4x5x6xoyax1by=f(x)x2x3x4x5x6在开区间内的连续函数不一定有最大值与最小
2、值.在闭区间上的连续函数必有最大值与最小值因此:该函数没有最值。f(x)max=f(a),f(x)min=f(x3)xoyax1by=f(x)x2x3x4x5x6如何求出函数在[a,b]上的最值?一般的如果在区间,[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。二、新课引入观察右边一个定义在区间[a,b]上的函数y=f(x)的图象:发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎
3、样才能判断出f(x3)是最小值,而f(b)是最大值呢?xX2oaX3bx1yy=f(x)二、新课引入(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤:(1)求f(x)在区间(a,b)内极值(极大值或极小值);注意:1.在定义域内,最值唯一;极值不唯一2.最大值一定比最小值大.二、新课引入求函数的最值时,应注意以下几点:(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.(2)闭区间[a,b]上的连续函数一定有
4、最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).有两个极值点时,函数有无最值情况不定。题型:求函数的最大值和最小值1、求出所有导数为0的点;2、计算;3、比较确定最值。B※典型例题
此文档下载收益归作者所有