欢迎来到天天文库
浏览记录
ID:36309491
大小:564.50 KB
页数:17页
时间:2019-05-09
《公开课《24.1.2垂径定理》课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?赵州桥主桥拱的半径是多少?问题情境24.1.2垂直于弦的直径——(垂径定理)实践探究把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.活动一如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)这个
2、图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么??思考·OABCDE活动二(1)是轴对称图形.直径CD所在的直线是它的对称轴(2)线段:AE=BE⌒⌒弧:AC=BC ,AD=BD⌒⌒CAEBO.D总结:垂径定理:垂直于弦的直径平分弦,并且平分弦对的两条弧。CD为⊙O的直径CD⊥AB条件结论⌒⌒⌒⌒AE=BEAC=BCAD=BD几何语言:∵CD为⊙O的直径CD⊥AB⌒⌒⌒⌒AE=BEAC=BCAD=BD∴∴下列图形是否具备垂径定理的条件?是不是是不是OEDCAB注意:定理中的
3、两个条件过圆心(直径),垂直于弦缺一不可!引申定理定理中的径可以是直径、半径或过圆心的直线或线段。从而得到垂径定理的变式:一条直线具有:平分弦经过圆心垂直于弦可推得平分弦所对的劣(优)弧垂径定理的几个基本图形探究:·OABCDE已知:如图,CD是⊙O的直径,AB为弦,且AE=BE.证明:连接OA,OB则OA=OB∵AE=BE∴CD⊥AB∴AD=BD,⌒⌒求证:CD⊥AB,且AD=BD,⌒⌒⌒⌒AC=BC⌒⌒AC=BC垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。∴CD⊥AB,∵CD是直径,AE=
4、BE⌒⌒AC=BC,⌒⌒AD=BD.·OABCDE(2)“不是直径”这个条件能去掉吗?如果不能,请举出反例。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。·OABCD“知二推三”(1)垂直于弦(2)过圆心(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧注意:当具备了(1)(3)时,应对另一条弦增加”不是直径”的限制.练习1:导学案练习垂径定理的应用2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为
5、矩形,又 ∵AC=AB∴AE=AD∴四边形ADOE为正方形.解:如图,设半径为R,在Rt⊿AOD中,由勾股定理,得解得R≈27.9(m).答:赵州桥的主桥拱半径约为27.9m.D37.47.2赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?AB=37.4,CD=7.2R18.7R-7.2再逛赵州石拱桥小结直径平分弦直径垂直于弦=>直径平分弦所对的弧直径垂直于弦直径平分弦(不是直径)直径平分弦所对的弧直径平分弧所对的弦直径平分弧直径垂直于弧所对的弦=>
6、=>1、圆的轴对称性2、垂径定理及其推论的图式E小结:解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。.CDABOMNE.ACDBO.ABO
此文档下载收益归作者所有