资源描述:
《4.4.1参数方程的意义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、参数方程的意义1、参数方程的概念:如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?提示:即求飞行员在离救援点的水平距离多远时,开始投放物资??救援点投放点1、参数方程的概念:xy500o物资投出机舱后,它的运动由下列两种运动合成:(1)沿ox作初速为100m/s的匀速直线运动;(2)沿oy反方向作自由落体运动。如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准
2、确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?1、参数方程的概念:如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?xy500o(2)并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y)都在这条曲线上,那么方程(2)就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。关于参数几点说明:参数是联系变数
3、x,y的桥梁,参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。2.同一曲线选取参数不同,曲线参数方程形式也不一样3.在实际问题中要确定参数的取值范围1、参数方程的概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数数学运用MNSTP(x,y)xyO例2:已知曲线C的参数方程是(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。a=92、方程所表示的曲线上一点的坐标是()练习1A、(2,7);B、C、D、(1,0)1
4、、曲线与x轴的交点坐标是()A、(1,4);B、C、D、B由练习2可知此参数方程即表示单位圆x2+y2=1已知曲线C的参数方程是点M(5,4)在该曲线上.(1)求常数a;(2)求曲线C的普通方程.解:(1)由题意可知:1+2t=5at2=4解得:a=1t=2∴a=1(2)由已知及(1)可得,曲线C的方程为:x=1+2ty=t2由第一个方程得:代入第二个方程得:练习2:将参数方程化成普通方程即将参数消去动点M作等速直线运动,它在x轴和y轴方向的速度分别为5和12,运动开始时位于点P(1,2),求点M的轨迹参数方程。解:
5、设动点M(x,y)运动时间为t,依题意,得所以,点M的轨迹参数方程为思考题:(1)建立直角坐标系,设曲线上任一点P坐标为(x,y);(2)选取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式;(4)证明这个参数方程就是所求的曲线的方程.参数方程求法:小结:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数(2)并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y)都在这条曲线上,那么方程(2)就叫做这条曲线的参数方程,系变数x,y的变数t叫做参变
6、数,简称参数。