欢迎来到天天文库
浏览记录
ID:36176897
大小:753.00 KB
页数:15页
时间:2019-05-06
《1.5 三角形全等的判定 第3课时》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.5三角形全等的判定浙教版八年级上册(第3课时)复习巩固1.判断三角形全等至少要有几个条件?至少要有三个条件.2.我们已经学过哪几种判断三角形全等的方法?ABCDEF在ΔABC和ΔDEF中,∵AB=DE,AC=DF,BC=EF,∴ΔABC≌ΔDEF(SSS).判定方法1:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).ABCDEF判定方法2:有一个角和夹这个角的两边对应相等的两个三角形全等(简写为“边角边”或“SAS”).{在ΔABC和ΔDEF中,AB=DE,∠B=∠E,BC=EF,∴ΔABC≌ΔDEF(SAS).ABC600
2、4503cmEGF6004503cm在△ABC中,AB=3cm,∠A=60°,∠B=45°,画一个△EFG,使EG=3cm,∠E=60°,∠G=45°.请问△ABC和△EFG全等吗?你是怎样验证的?EGF6004503cm引新课有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).判定方法3在ΔABC和ΔDEF中,∠A=∠D,AC=DF,∠C=∠F,解∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°,(三角形的内角和等于180°)ABCDEF在ΔABC和ΔDEF中,∠B=∠E,∠C=∠F,AC=DF,请说明
3、ΔABC≌ΔDEF.∴∠A=180°-∠B-∠C,∠D=180°-∠E-∠F.∵∠B=∠E,∠C=∠F,∴∠A=∠D.∴ΔABC≌ΔDEF(ASA).例4已知:如图,∠1=∠2,∠C=∠E,AC=AE.求证:△ABC≌△ADECEDBA21三角形全等的判定方法3:∵∠B=∠E,BC=EF,∠C=∠F,∴ΔABC≌DEF(ASA).ABCDEF小结如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?有两个角和这两个角的夹边对应相等的两个三
4、角形全等.()公共边练一练完成下列推理过程:在△ABC和△DCB中,∠ABC=∠DCB∵BC=CB∴△ABC≌△DCB()ASAABCDO1234∠1=∠2例5已知:如图,点B,F,E,C在同一条直线上,AB//CD,且AB=CD,∠A=∠D.求证:AE=DFAFEDCBDCBA练一练、在△ABC中,AB=AC,AD是边BC上的中线.请说明∠BAD=∠CAD的理由.解∵AD是BC边上的中线, ∴BD=CD(三角形中线的定义),在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAB(全等三角形对应角相等).AD是∠BA
5、C的角平分线.请说明BD=CD的理由.解∵AD是∠BAC的角平分线(已知),∴∠BAD=∠CAD(角平分线的定义),∵AB=AC(已知),∠BAD=∠CAD(已证),AD=AD(公共边),∴△ABD≌△ACD(SAS),∴BD=CD(全等三角形对应边相等).课堂小结(1)两角和它们的夹边对应相等的两个三角形全等.简写成“角边角”或“ASA”.知识要点:(2)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径.数学思想:要学会用分类的思想,转化的思想解决问题。再 见
此文档下载收益归作者所有