欢迎来到天天文库
浏览记录
ID:36124904
大小:1.16 MB
页数:19页
时间:2019-05-06
《圆的性质复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1圆的有关性质复习八仙中学杨桂花复习指导:请结合课本内容完成复习提纲中的题目,有困难的地方可小组内讨论。(一)1、什么样的图形叫做圆?并结合图形说说什么是圆心,半径,弦,直径,半圆,优弧,劣弧。(举出一个例子即可)2、圆上各点到定点的距离相等吗,到定点的距离相等的点在哪里?因此圆又可以看成怎样的图形?3、什么样的角是圆心角,什么样的角是圆周角?(并根据图形举例说明)4、什么样的图形是圆内接多边形,什么样的图形是外接圆?5、圆内接四边形具有怎样的性质?限时10分钟复习指导:时间到请结合课本内容完成复习提纲中的题目,有困难的地方可小组内讨论。(一)1、什么样的图形叫做
2、圆?并结合图形说说什么是圆心,半径,弦,直径,半圆,优弧,劣弧。(举出一个例子即可)2、圆上各点到定点的距离相等吗,到定点的距离相等的点在哪里?因此圆又可以看成怎样的图形?3、什么样的角是圆心角,什么样的角是圆周角?(并根据图形举例说明)4、什么样的图形是圆内接多边形,什么样的图形是外接圆?5、圆内接四边形具有怎样的性质?展示归纳:(一)1、什么样的图形叫做圆?并结合图形说说什么是圆心,半径,弦,直径,半圆,优弧,劣弧。(举出一个例子即可)在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。其固定的端点O叫做圆心,线段OA叫做半径。展示
3、归纳:(一)2、圆上各点到定点的距离相等吗,到定点的距离相等的点在哪里?因此圆又可以看成怎样的图形?圆上各点到定点的距离相等,到定点的距离相等的点都在同一个圆上,因此圆可以看成所有到定点O的距离等于定长r的点的集合。展示归纳:(一)3、什么样的角是圆心角,什么样的角是圆周角?(并根据图形举例说明)顶点在圆心的角叫做圆心角;顶点在圆上且两边都与圆相交的角叫做圆周角。展示归纳:(一)4、什么样的图形是圆内接多边形,什么样的图形是外接圆?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆。展示归纳:(一)5、圆内接四边形具有怎样的性质
4、?圆内接四边形对角互补。展示归纳:(2)如果改变上题的条件,你还可以得到什么结论,依据是什么?(二)填空:1、如图所示,AB是⊙O的直径,CD是不过圆心的弦,AB、CD交于点M,(1)如果AB⊥CD,那么,,。依据。AB⊥CDCM=DMAC=AD⌒⌒BC=BD⌒⌒垂直于弦的直径平分弦,且平分弦所对的两条弧如果,那么,,。依据。CM=DMAC=AD⌒⌒BC=BD⌒⌒平分弦(非直径)的直径垂直弦,且平分弦所对的两条弧展示归纳:(二)2、如图所示,AB、CD是⊙O的两条弦,(1)如果∠AOB=∠COD,那么,。依据:。(2)如果改变上题的条件,还可以得到什么结论,依据是什么?
5、AB=CDAB=CD⌒⌒在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等如果,那么,。依据:。AB=CDAB=CD⌒⌒在同圆或等圆中,相等弧的所对的圆心角相等,所对的弦也相等∠AOB=∠CODAB=CD⌒⌒在同圆或等圆中,相等弦的所对的圆心角相等,所对的弧也相等AB=CD∠AOB=∠COD展示归纳:⌒(二)3、如图所示,在⊙O中,C、D(不与A、B重合)是BDA上的两点:(1)∠ADB=,依据。(2)还有别的答案吗?(3)若AB是直径,那么∠ADB=∠ACB=.依据∠ADB=,依据。一条弧所对的圆周角等于它所对的圆心角的一半∠ACB同弧或等弧所对的圆周角相等90
6、°直径(或半圆)所对的圆周角是直角,90°圆周角所对的弦是直径。1、如图所示,在⊙O中,CD是弦,半径OA⊥CD于E,CD的长为8,OE的长为3,则⊙O的半径为()。5巩固与提高:2、如图,在⊙O中,AB是弦,半径OC交AB于E且BE=AE,∠COB=60°,∠ADC为()。30°巩固与提高:3、如图,在⊙O中,半径OD⊥弦AB于C,则下列结论(1)BC=AC,(2)AD=DB,(3)∠DAB=∠AOD,(4)∠OAB=∠DAB其中正确的结论是()。巩固与提高:(1)、(2)、(3)4、如图所示,⊙O是△ABC的外接圆,AB=AC,∠ABC=60°BC的长为4,(1)求
7、∠AOB的度数。(2)求⊙O的直径。⌒⌒巩固与提高:总结与反思:通过本节课的学习,你有什么收获?作业:课本91页:15、16题。拓展与应用:如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,(1)求∠ACB、∠ADB的度数。(2)四边形ABCD的面积。
此文档下载收益归作者所有