22.1.3.1二次函数y=ax2+k的图象和性质上下平移

22.1.3.1二次函数y=ax2+k的图象和性质上下平移

ID:36100615

大小:561.50 KB

页数:19页

时间:2019-05-05

22.1.3.1二次函数y=ax2+k的图象和性质上下平移_第1页
22.1.3.1二次函数y=ax2+k的图象和性质上下平移_第2页
22.1.3.1二次函数y=ax2+k的图象和性质上下平移_第3页
22.1.3.1二次函数y=ax2+k的图象和性质上下平移_第4页
22.1.3.1二次函数y=ax2+k的图象和性质上下平移_第5页
资源描述:

《22.1.3.1二次函数y=ax2+k的图象和性质上下平移》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题y=x2+18642-2-55xyy=x2-1y=x226.1.3二次函数y=ax2+k的图象与性质y=ax2a>0a<0图象开口对称性顶点增减性二次函数y=ax2的性质开口向上开口向下

2、a

3、越大,开口越小关于y轴对称顶点坐标是原点(0,0)顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减OO例2在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象。解:列表:x…-3-2-10123…y=x2+1……y=x2-1……105212510830-1038y=x2+1108642-2-55xyy=x2-1讨论(1)抛

4、物线y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?抛物线开口方向对称轴顶点坐标y=X2+1y=x2-1y=x2+1108642-2-55xyy=x2-1向上y轴(0,1)向上y轴(0,-1)讨论(2)抛物线y=x2+1、y=x2-1与y=x2抛物线有什么位置关系?y=x2+18642-2-55xyy=x2-1y=x2把抛物线y=x2向下移1个单位,就得到抛物线y=x2-1;抛物线y=x2向上平移1个单位,就得到抛物线y=x2+1。把抛物线y=2x2向上平移5个单位,会得到哪条抛物线?向下平移3.4个单位呢?思考归纳:把抛物线y=ax2向上平移k个单位,

5、就得到抛物线y=ax2+k;把抛物线y=ax2向下平移k个单位,就得到抛物线y=ax2-ky=2x2+5y=2x2-3.4上加下减12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-102在同一直角坐标系中,画出下列二次函数的图象:y=-0.5x2,y=-0.5x2+2,y=-0.5x2-2观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴及顶点。你能说出抛物线y=-0.5x2+k的开口方向、对称轴及顶点吗?它与抛物线y=-0.5x2有什么关系?y=-0.5x2-2y=-0.5x2y=-0.5x2+2想一想抛物线y=ax2+k中的a决

6、定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?总结一般地抛物线y=ax2+k有如下性质:1、当a>0时,开口向上;当a<0时,开口向下,2、对称轴y轴(或x=0),3、顶点坐标是(0,k),4、

7、a

8、越大开口越小,反之开口越大。做笔记y=ax2+ka>0a<0图象开口对称性顶点增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减(0,k)(1)抛物线y=ax2+k与y=-5x2的形状大小,开口方向都相同,且其顶点坐标是(0,

9、3),则其表达式为,它是由抛物线y=-5x2向平移个单位的.例题y=-5x2+3上3(2)抛物线y=ax2+k与y=3x2的形状相同,且其顶点坐标是(0,1),则其表达式为,y=3x2+1或y=-3x2+1练习:1、把抛物线y=-2x2向上平移3个单位长度,得到的抛物线是2、把抛物线y=-x2-2向下平移5个单位,得到的抛物线是3、一条抛物线向上平移2.5个单位后得到抛物线y=0.5x2,原抛物线是4、分别说下列抛物线的开口方向,对称轴、顶点坐标、最大值或最小值各是什么及增减性如何?。(1)y=-x2-3(2)y=1.5x2+7(3)y=2x2-1(4)y=−2x2

10、+3y=-2x2+3y=-x2-7y=0.5x2-2.55.(1)抛物线y=−2x2+3的顶点坐标是,对称轴是,在___侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=_____时,函数y的值最大,最大值是,它是由抛物线y=−2x2线怎样平移得到的__________.(2)抛物线y=x²-5的顶点坐标是____,对称轴是____,在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=____时,函数y的值最___,最小值是.练习:1、按下列要求求出二次函数的解析式:(1)已知抛物线y=ax2+k经过点(-3,2)(0,-1)求该抛物线线的解析式

11、。(2)形状与y=-2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式。(3)对称轴是y轴,顶点纵坐标是-3,且经过(1,2)的点的解析式,做一做:(4)、二次函数y=ax2+k(a,k是常数),当x取值x1、x2时(x1≠x2),函数值相等,则当x取x1+x2时,函数值为k2.函数y=3x2+5与y=3x2的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状3.已知抛物线y=2x2–1上有两点(x1,y1),(x2,y2)且x1<x2<0,则y1y2(填“<”或“>”)4.已知一个二次函数图像的顶点在y轴上,并且离原点1个单位

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。