欢迎来到天天文库
浏览记录
ID:36075208
大小:262.38 KB
页数:7页
时间:2019-05-04
《高考数学大二轮复习第1部分专题7概率与统计第2讲概率及其应用练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一部分专题七第二讲概率及其应用A组1.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(C)A. B. C. D.[解析] 根据题意可以知道,所输入密码所有可能发生的情况如下:M1,M2,M3,M4,M5,I1,I2,I3,I4,I5,N1,N2,N3,N4,N5共15种情况,而正确的情况只有其中一种,所以输入一次密码能够成功开机的概率是.故选C.2.在某次全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选2
2、人,则选出的火炬手的编号相连的概率为(D)A.B.C.D.[解析] 由题意得从5人中选出2人,有10种不同的选法,其中满足2人编号相连的有(1,2),(2,3),(3,4),(4,5),共4种不同的选法,所以所求概率为=.故选D.3.(2018·江西宜春中学3月模拟)已知在数轴上0和3之间任取一个实数x,则使“log2x<1”的概率为(C)A.B.C.D.[解析] 由log2x<1,得03、] 令A=“甲、乙下成和棋”,B=“甲获胜”,C=“甲输”,则=“甲不输”.∵P(A)=,P(B)=,∴P(C)=1-,P(B)=,∴P(C)=1--=.∴P()=1-=.故甲不输的概率为.5.在区间[-,]上随机取一个数x,则sinx+cosx∈[1,]的概率为(D)A.B.C.D.[解析] sinx+cosx=sin(x+),由1≤sin(x+)≤,得≤sin(x+)≤1,结合x∈[-,]得0≤x≤,所以所求概率为=.故选D.6.节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯4、以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是(C)A.B.C.D.[解析] 如图所示,设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x,y,且x,y相互独立,由题意可知所以两串彩灯第一次亮的时间相差不超过2秒的概率为P(5、x-y6、≤2)====.7.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=.[解析] 将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”,则C,D互斥,7、且P(C)=,P(D)=,∴P(A+B)=P(C+D)=P(C)+P(D)=.8.已知函数f(x)=2x2-4ax+2b2,若a∈{4,6,8},b∈{3,5,7},则该函数有两个零点的概率为.[解析] 要使函数f(x)=2x2-4ax+2b2有两个零点,即方程x2-2ax+b2=0要有两个实根,则Δ=4a2-4b2>0.又a∈{4,6,8},b∈{3,5,7},即a>b,而a,b的取法共有3×3=9种,其中满足a>b的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为=.9.(2018·郑州模拟)折纸已经8、成为开发少年儿童智力的一大重要工具和手段.已知在折叠“爱心”的过程中会产生如图所示的几何图形,其中四边形ABCD为正方形,G为线段BC的中点,四边形AEFG与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为.[解析] 设正方形ABCD的边长为2,则由题意,多边形AEFGHID的面积为SAGFE+SDGHI+S△ADG=()2+()2+×2×2=12,阴影部分的面积为2××2×2=4,所以向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为=.10.(2018·永州三模)我国为确保贫困人口到2029、0年如期脱贫,把2017年列为“精准扶贫”攻坚年,2017年1月1日某贫困县随机抽取100户贫困家庭的每户人均收入数据做为样本,以考核该县2016年的“精准扶贫”成效(2016年贫困家庭脱贫的标准为人均收入不小于3000元).根据所得数据将人均收入(单位:千元)分成五个组:[1,2),[2,3),[3,4),[4,5),[5,6],并绘制成如图所示的频率分布直方图.(1)求频率分布直方图中a的值.(2)如果被抽取的100户贫困家庭有80%脱贫,则认为该县“精准扶贫”的成效是理想的.请从统计学的角度说明该县的“精准扶贫”效果是理想还是不理想?(3)从户人均收入10、小于3千元的贫困家庭中随机抽取2户,求至少有1户人均
3、] 令A=“甲、乙下成和棋”,B=“甲获胜”,C=“甲输”,则=“甲不输”.∵P(A)=,P(B)=,∴P(C)=1-,P(B)=,∴P(C)=1--=.∴P()=1-=.故甲不输的概率为.5.在区间[-,]上随机取一个数x,则sinx+cosx∈[1,]的概率为(D)A.B.C.D.[解析] sinx+cosx=sin(x+),由1≤sin(x+)≤,得≤sin(x+)≤1,结合x∈[-,]得0≤x≤,所以所求概率为=.故选D.6.节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯
4、以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是(C)A.B.C.D.[解析] 如图所示,设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x,y,且x,y相互独立,由题意可知所以两串彩灯第一次亮的时间相差不超过2秒的概率为P(
5、x-y
6、≤2)====.7.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=.[解析] 将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”,则C,D互斥,
7、且P(C)=,P(D)=,∴P(A+B)=P(C+D)=P(C)+P(D)=.8.已知函数f(x)=2x2-4ax+2b2,若a∈{4,6,8},b∈{3,5,7},则该函数有两个零点的概率为.[解析] 要使函数f(x)=2x2-4ax+2b2有两个零点,即方程x2-2ax+b2=0要有两个实根,则Δ=4a2-4b2>0.又a∈{4,6,8},b∈{3,5,7},即a>b,而a,b的取法共有3×3=9种,其中满足a>b的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为=.9.(2018·郑州模拟)折纸已经
8、成为开发少年儿童智力的一大重要工具和手段.已知在折叠“爱心”的过程中会产生如图所示的几何图形,其中四边形ABCD为正方形,G为线段BC的中点,四边形AEFG与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为.[解析] 设正方形ABCD的边长为2,则由题意,多边形AEFGHID的面积为SAGFE+SDGHI+S△ADG=()2+()2+×2×2=12,阴影部分的面积为2××2×2=4,所以向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为=.10.(2018·永州三模)我国为确保贫困人口到202
9、0年如期脱贫,把2017年列为“精准扶贫”攻坚年,2017年1月1日某贫困县随机抽取100户贫困家庭的每户人均收入数据做为样本,以考核该县2016年的“精准扶贫”成效(2016年贫困家庭脱贫的标准为人均收入不小于3000元).根据所得数据将人均收入(单位:千元)分成五个组:[1,2),[2,3),[3,4),[4,5),[5,6],并绘制成如图所示的频率分布直方图.(1)求频率分布直方图中a的值.(2)如果被抽取的100户贫困家庭有80%脱贫,则认为该县“精准扶贫”的成效是理想的.请从统计学的角度说明该县的“精准扶贫”效果是理想还是不理想?(3)从户人均收入
10、小于3千元的贫困家庭中随机抽取2户,求至少有1户人均
此文档下载收益归作者所有