欢迎来到天天文库
浏览记录
ID:36063170
大小:309.35 KB
页数:8页
时间:2019-05-03
《杭州中考数学复习几何初步与三角形第一节线段、角、相交线与平行线同步测试》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章 几何初步与三角形第一节 线段、角、相交线与平行线姓名:________ 班级:________ 用时:______分钟1.(2018·浙江金华中考)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠42.(2018·江苏宿迁中考)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24°B.59°C.60°D.69°3.(2018·山东枣庄中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在
2、直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.(2018·湖南益阳中考)如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是()A.∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°5.(2018·山东聊城中考)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°6.(2018·浙江金华模拟)
3、若∠α=35°,则∠α的补角为__________度.7.(2018·湖南衡阳中考)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为__________.8.(2018·湖南永州中考)一副透明的三角板,如图叠放,直角三角板的斜边AB,CE相交于点D,则∠BDC=__________.9.(2018·重庆中考B卷)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.10.(2017·湖北十堰中考)
4、如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°11.如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm.如果点C是OB上一个动点,则PC的最小值为()A.2cmB.2cmC.4cmD.4cm12.如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是()A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°13.
5、如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=____________.14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是______.15.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B=__________.16.(2018·湖北鄂州中考)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E,F分别为DB,BC的中点,
6、连结AE,EF,AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系.17.已知O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,∠COF和∠BOE之间有何数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并加以证明.18.如图,点O
7、为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数;(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠A
8、OM与∠NOC的数量关系,并说明理由.参考答案【基础训练】1.D 2.B 3.D 4.C 5.C6.145 7.75° 8.75°9.解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°.∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°.∵∠FHG是△EFH的外角,∴∠EFB=55°-35°=20°.【拔高训练】10
此文档下载收益归作者所有