欢迎来到天天文库
浏览记录
ID:36037484
大小:385.50 KB
页数:8页
时间:2019-04-29
《《简单事件的概率》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《简单事件的概率》教案教学目标设计用具体、明确、可操作的行为语言,描述本课的三维教学目标.知识和技能目标①.了解事件A发生的概率为;②.掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率.③.通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力.过程与方法目标通过问题情境进一步理解概率的意义,加深对概念的理解,进一步发展学生合作交流的意识和能力教学重点及其依据等可能事件概率的计算.由于七年级下册的列表法只是在树状图的基础上加上表格,但是真正的矩阵式表格需要较强的分析
2、能力,所有用矩阵式表格来分析事件发生的结果总数是本节教学的难点.教学过程一、创设情境,引入新课【教师活动】:现有一转盘,请在四个颜色区域中,设定一个区域有奖,奖品是一支笔.几何画板展示:【学生活动预设】:大部分学生都会设定黄色区域有奖,因为黄色区域的面积较大,再让学生自己动手转动转盘,如果刚好落在自己设定有奖的区域,奖得到一份奖品.【教师活动】:如果学生没获奖,可以说:有点可惜,就差那么一点点了,谢谢你的参与.或者说看来想中奖也不是那么容易的.如果学生中奖了,可以说:哇,你的手气很好,奖你一支笔.或者说看来你也
3、很幸运,奖你一支笔,或者说恭喜你.让几位学生都动手实践过后,可以问最后一位学生,为什么你也设定黄色区域有奖?【学生活动预设】:学生回答:因为黄色区域所占的比例比最大;因为黄色区域的面积最大;因为黄色区域的圆心角最大.【教师引导】:这四块区域的可能性相同吗?【学生活动预设】:不相同【设计意图】:让学生动手转转盘,培养学生学习数学的兴趣,激发学生参与互动的热情,幷为下面的等可能事件作铺垫.二、探究新知,巩固应用【教师活动】:现在换成这个转盘,你会设定哪个区域有奖?【学生活动预设】:无所谓,都一样【教师引导】:为什么
4、?【学生活动预设】:这四块的面积相等.(或这四块的圆心角的度数相等)【教师活动】:根据四块颜色区域的面积相等,从而得出指针落在这四块的可能性是相同.再让学生求指针落在黄色区域的概率是多少?你是怎么得到的?【学生活动预设】:,总共有4种结果总数,而落在黄色区域只有1种,所以指针落在黄色区域的概率就是.(或1指指针落在黄色区域只有1种,4指所有可能的结果有4种,所有它的概率就是)【教师引导】:如果我把所有可能的结果总数记为,而这一事件记为事件A,事件A发生的结果总数记为,那么事件A发生的概率就可以这么求?【学生活动
5、预设】:可能性相同可能性不相同【教师活动】:出示概念:如果事件发生的各种结果的可能性相同,结果总数为,事件A发生的可能的结果总数为,那么事件A发生的概率为学生齐读,教师板书概率公式.【设计意图】:让学生经历事件发生的各种结果的可能性不相同,到相同的过程,自己总结出等可能事件的概率公式.【教师总结】:图1不可以用概率公式进行计算,而图2可以用概率公式进行计算.同学们对概率公式有初步了解,下面我们来判断一下.【教师活动】出示判断题下列说法对吗?请说明理由(1)任意投掷一枚骰子,朝上一面的点数为1的概率是.(2)自由
6、转动如图三色转盘一次,“指针落在红色区域”的概率为.(3)任意抛掷两枚均匀硬币,硬币落地后,一正一反的概率是.【学生活动预设】:(1)是对的,因为骰子共有6个面,每个面都是一样的,而点数1只有一个面,所有它的概率就是.(2)是错的,因为各种结果的可能性不相同.因为三块颜色区域的面积不一样.因为三块的圆心角不相同,所以不能用概率公式进行计算.(3)学生说是正确的,共有三种情况,分别是两正、两反、一正一反,所有它的概率是.还有学生可能会说是错误的,共有四种情况,分别是两正、两反、一正一反,一反一正,所有它的概率是.
7、【教师追问】:可以通过什么方法把各种结果表示出来?【学生活动】:画树状图,到黑板上展示.【设计意图】:意图一是让学生更一步加深对概率公式的应用的前提是各种结果的可能性要相同,意图二是让学生回忆了树状图,为例1的解答提供了方法.三、例题解析,巩固知识例1:最近开泰为了促销,组织了一次抽奖活动,开泰准备甲、乙两个相同的转盘,一次性购满200者,将有一次抽奖活动,要求顾客让两个转盘分别自由转动一次,当转盘停止转动时.求:(1)获奖方式如下:如果两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成),可享受6折优惠.求
8、:P(中奖)(2)获奖方式如下:如果两个指针落在区域的颜色能配成绿色(黄、蓝两色混合)或紫色(红、蓝两色混合配成),可享受6折优惠.求:P(中奖)【教师活动】:首先老师想问一下,指针落在各颜色区域的可能性相同吗?【学生活动预设】:相同,因为扇形的圆心角都是相等的.【教师引导】:既然是一个等可能事件,那么我可以利用公式来进行计算,但是计算之前你必须要知道两个总数,一个是结果总数,一个是事
此文档下载收益归作者所有