资源描述:
《2019春七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线教案2(新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.1.2 垂线教学目标1.了解垂直概念;2.能说出垂线的性质“经过一点;能画出已知直线的一条垂线,并且只能画出一条垂线”;3.会用三角尺或量角器过一点画一条直线的垂线.重点:两直线互相垂直的有关性质.难点:过直线上(外)一点作已知直线的垂线.教学过程一、创设情境,引入课题生活中的垂线二、目标导学,探索新知目标导学1:垂直的定义活动1在相交线的模型中,固定木条a,转动木条b,当b的位置变化时,a、b所成的角α也会发生变化.当α=90°时,a与b垂直.当α≠90°时,a与b不垂直,叫斜交.1.垂直定义:当两
2、条直线相交所成的四个角中,有一个角是直角(90°)时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。(说明)从垂直的定义可知,判断两条直线互相垂直的关键:只要找到两条直线相交时四个交角中有一个角是直角。2.垂直的表示:用“⊥”和直线字母表示垂直例如、如图,a、b互相垂直,垂足为O,则记为:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b,垂足为O.或a⊥b于O.实际应用:日常生活中,两条直线互相垂直的情形很常见,说出图中的一些互相垂直的线条.你能再举出其他例子吗?【教学备注】【教学提示
3、】引导学生通过木条的转动过程得出垂线的定义。试一试:1、下面四种判定两条直线垂直的方法,正确的有()个(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直(2)两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直(3)两条直线相交,所成的四个角相等,这两条直线互相垂直(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直(A)4(B)3(C)2(D)12.如图,已知AOB为一直线,∠AOD:∠BOD=3:1,OD平分∠COB,(1)求∠AOC的度数;(2)判断AB与OC的位置关系.
4、目标导学2:垂线的书写形式当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.书写形式1:因为∠AOD=90°(已知)所以AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°书写形式2:.如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠DOF,∠DOE=50°,求∠AOC、∠EOF、∠COF的度数.垂线的定义学习目标3:垂线的画法和垂线性质1活动2(一)画已知直线的垂线(1)如图1,已知直线m,作m的垂线。图1图2(2)如图2,已知直线m和m上的
5、一点A,作m的垂线.(1)靠:把三角板的一直角边靠在直线上;(2)移:移动三角板到已知点;(3)画线:沿着三角板的另一直角边画出垂线.思考:(1)画已知直线m的垂线能画几条?(2)过直线m上的一点A画m的垂线,这样的垂线能画几条?(3)过直线m外的一点A画m的垂线,这样的垂线能画几条?试一试:过点p向线段AB所在直线引垂线,正确的是().【教学提示】对垂线概念进行小结。【教学提示】通过画垂线的过程,引导学生思考,得出性质1.垂线的性质1过一点有且只有一条直线与已知直线垂直。说明:(1)“过一点”包括几种情
6、况?线上和线外;(2)“有且只有”是什么意思?存在性与唯一性。(二)过点P作线段或射线所在直线的垂线注意:过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.画线段(或射线)的垂线时,有时要将线段延长(或将射线反向延长)后再画垂线.试一试:1.如图,分别过A、B、C,作BC、AC、AB的垂线。2.如图,过P分别作OA、OB的垂线。学习目标3:垂线的性质活动3比较过直线m外一点O与m相交的所有线段中,哪一条最短?垂线的性质2直线外一点与直线上各点连结的所有线段中.垂线段最短.即:垂线段
7、最短.点到直线的距离直线外一点到已知直线的垂线段的长度就叫做点到直线的距离.应用:在体育课上,老师是怎样测量同学们的跳远成绩的?你能尝试说明其中的理由吗?做法:将尺子拉直与踏板边所在直线垂直,取最近的脚印后跟与踏板边沿之间的距离就是跳远成绩.理由:直线外一点与直线上各点连结的所有线段中,垂线段最短.四、垂线的定义与性质的应用1.如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠DOF,∠DOE=50°,求∠AOC、∠EOF、∠COF的度数.解:因为AB⊥OE(已知)所以∠EOB=90°(垂直的定义
8、)因为∠DOE=50°(已知)所以∠DOB=40°(互余的定义)所以∠AOC=∠DOB=40°(对顶角相等)又因为OB平分∠DOF所以∠BOF=∠DOB=40°(角平分线定义)所以∠EOF=∠EOB+∠BOF=90°+40°=130°所以∠COF=∠COD-∠DOF=180°-80°=100°(邻补角定义)2.如图,一辆汽车在一段笔直的公路上从A村开往B村,P村不在路AB上.(1)如果有一人想在A、B两村之间下车,前往P村,他