与一次函数有关地压轴题

与一次函数有关地压轴题

ID:35940627

大小:338.65 KB

页数:15页

时间:2019-04-26

与一次函数有关地压轴题_第1页
与一次函数有关地压轴题_第2页
与一次函数有关地压轴题_第3页
与一次函数有关地压轴题_第4页
与一次函数有关地压轴题_第5页
资源描述:

《与一次函数有关地压轴题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、一次函数压轴题综合训练一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在

2、P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线ℓ:y=kx+6与x轴、y轴

3、分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;(2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上

4、有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,

5、与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.6.首先,我们看两个问题的解答:问题1:已知x>0,求的最小值.问题2:已知t>2,求的最小值.问题1解答:对于x>0,我们有:≥.当,即时,上述不等式取等号,所以的最小值.问题2解答:令x=t﹣2,则t=x+2,于是.由问题1的解答知,的最小值,所以的最小值是.弄清上述问题及解答方法之后,解答下述问题:在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB的面积值等于

6、OA

7、+

8、OB

9、+3.(1)用b表示k;(2)求△AOB面积的最

10、小值.7.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有 _________ 个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标 _________ ;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.8.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O位置,点P的运

11、动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标.9.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A _________ ,C _________ ;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).10.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4

12、,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。