欢迎来到天天文库
浏览记录
ID:35793728
大小:104.58 KB
页数:4页
时间:2019-04-18
《七年级数学3.2解一元一次方程(一)—合并同类项与移项第2课时用移项、合并同类项解一元一次方程课时训练1新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2解一元一次方程(一)(第二课时)教材知能精练知识点:移项1.方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62.下列解方程中,移项正确的是()A.由5+x=18得x=18+5B.由5x+=3x得5x-3x=C.由x+3=-x-4得x+x=-4-3D.由3x-4=6x得3x+6x=43.在解方程时,下列移项正确的是()A.B.C.D.4.已知当b=1,c=-2时,代数式ab+bc=10-ca,则a的值是()A.12B.6C.-6D.-125
2、.某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是().A.20日B.21日C.22日D.23日6.4-x=x+2变形为-x-x=2-4,这种变形叫__________,其根据是__________.7.方程2x-0.3=1.2+3x移项得.8.当_____时,代数式与的值互为相反数.9.已知y1=2x+3,y2=,如果y1=2y2,则x=_______.10.若,则___.11.解方程:12.张老师给学生分练习本,若每人分4本,则余8本,若每人分5本,则缺2本,求有多少名学生和多少本练习本.学科能力迁移13
3、.【易错题】解下面的方程时,既要移含未知数的项,又要移常数项的是().A.B.C.D.14.【新情境题】小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:+■.怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是,于是很快补上了这个常数,并迅速完成了作业.同学们,你能补出这个常数吗?它应是().A1B.2C.3D.415.【变式题】若,,当_______时,.16.【多解法题】若,则的值为_____.课标能力提升17.【探究题】设“●■▲”分别表示三种不同的物体(如图3-2-5),前两架天平保持平衡,如
4、果要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.218.【开放题】已知有最大值,则方程的解是()A.B.C.D.19.【综合题】若2xn+1与3x2n-1是同类项,则n=______.20.【解决问题型题目】2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.品味中考典题21.有一个两位数,它的十位数字比个位数字大,并且这个两位数大于且小于,则这个两位数是
5、()A.B.C.D.B22.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为元,则可列出的方程为.迷途知返___________________________________________________________________________________________________________________________________________________________________________课外精彩空间数学冤案人类很早就掌握了一元二次方程的解
6、法,但是对一元三次方程的研究,则是进展缓慢.古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了. 在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法.在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺.那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样. 数学史上最早发现一元三次方程通式解的人,是十六世
7、纪意大利的另一位数学家尼柯洛·冯塔纳(NiccoloFontana).冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一.由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思.后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳. 经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法.这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲.但是冯塔纳不愿意将
8、他的这个重要发现公之于世. 当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣.他几次诚恳地登门请教,希望获得冯塔纳的求根公式.可是冯塔纳始终守口如瓶,滴水不漏.虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”.后来
此文档下载收益归作者所有