欢迎来到天天文库
浏览记录
ID:35760921
大小:116.42 KB
页数:5页
时间:2019-04-16
《九年级数学 旋转23.1图形的旋转第1课时旋转的概念及性质教案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、23.1 第1课时 旋转的概念及性质01 教学目标1.了解旋转及旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题.3.通过观察具体实例认识旋转,探索它的基本性质.4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.02 预习反馈阅读教材P59内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情境中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题
2、:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?知识探究1.把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.2.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.自学反馈1.下列物体的运
3、动不是旋转的是(C)A.坐在摩天轮里的小朋友 B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点O,旋转角是∠AOD(∠BOE),经过旋转,点A转到点D,点C转到点F,点B转到点E,线段OA,OB,BC,AC分别转到OD,OE,EF,DF,∠A,∠B,∠C分别与∠D,∠E,∠F是对应角.【点拨】 旋转角指对应点与旋转中心的连线的夹角.03 新课讲授例1 如图,四边形ABCD、四边形EFGH都是边长为1的正方
4、形.(1)这个图案可以看作是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?【解答】 (1)可以看作是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A,点B,点C,点D移到的位置分别是点E,点F,点G,点H.【点拨】 这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.【跟踪训练1】 如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?若能,指出由哪一
5、部分旋转而得到的?并说明理由;(2)它的旋转角多大?并指出它们的对应点.解:(1)能,由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△CBQ可绕B点旋转与△ABP重合,从而得到正方形ABCD.(2)90°,点C对应点A,点Q对应点P.例2 已知,在Rt△ABC中,∠C=90°,∠BAC=45°,AC=2,将△ABC绕点A顺时针旋转60°得到△ADE,连接BE,交AD于点F,求BE的长.【思路点拨】 关键在于连接BD,然后利用旋转的性质得出△ADB是等边三角形,从而得到BE垂直
6、平分AD,将BE的长转化为EF+FB的长.【解答】 连接BD,∵∠C=90°,∠BAC=45°,AC=2,∴AB=2.∵将△ABC绕点A顺时针旋转60°得到△ADE,∴AD=AB,∠DAB=60°.∴△ADB是等边三角形.∴AB=BD.∵AE=DE,∴BE垂直平分AD.∴由勾股定理得AF=EF=,BF=.∴BE=EF+BF=+.【跟踪训练2】 (23.1第1课时习题)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接C
7、C′,则∠CC′B′的度数是15°.例3 (教材P60例题)如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.【解答】 图略.【点拨】 关键是确定△ADE三个顶点的对应点的位置.04 巩固训练1.下列属于旋转现象的是(C)A.空中落下的物体B.雪橇在雪地里滑动C.拧紧水龙头的过程D.火车在急刹车时向前滑动2.将左图按逆时针方向旋转90°后得到的是(D)3.如图所示,将四边形ABOC绕O点按顺时针方向旋转得到四边形DFOE,则下列角中,不是旋转角的是(D)A.∠BOFB.∠
8、AODC.∠COED.∠AOF4.如图,将左边的“心形”绕点O顺时针旋转95°得到右边的“心形”,如果∠BOC=75°,则A,B,C三点的对应点分别是E,D,F,∠DOF=75°,∠COD=20°.5.如图,把△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC
此文档下载收益归作者所有