欢迎来到天天文库
浏览记录
ID:35759420
大小:284.25 KB
页数:8页
时间:2019-04-16
《2018年秋高中数学1.7定积分的简单应用1.7.1定积分在几何中的应用1.7.2定积分在物理中的应用学案新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.7 定积分的简单应用1.7.1 定积分在几何中的应用1.7.2 定积分在物理中的应用学习目标:1.会用定积分求平面图形的面积.(重点、易混点)2.会求变速直线运动的路程和变力做功.(重点、难点)[自主预习·探新知]1.定积分与平面图形面积的关系(1)已知函数f(x)在[a,b]上是连续函数,由直线y=0,x=a,x=b与曲线y=f(x)围成的曲边梯形的面积为S,填表:f(x)的符号平面图形的面积与定积分的关系f(x)≥0S=f(x)dxf(x)<0S=-f(x)dx(2)一般地,如图171,如果在公共的积分区间[a,
2、b]上有f(x)>g(x),那么直线x=a,x=b与曲线y=f(x),y=g(x)围成的平面图形的面积为S=[f(x)-g(x)]dx.即曲边梯形的面积等于曲边梯形上、下两个边界所表示函数的差的定积分.图1712.变速直线运动的路程做变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即s=v(t)dt.思考:变速直线运动的路程和位移相同吗?[提示]不同.路程是标量,位移是矢量,两者是不同的概念.3.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F
3、(x)相同的方向从x=a移动到x=b(a
4、3与直线y=x所围成的图形的面积等于( )【导学号:31062099】C [由题意知,由y=x3及y=x所围成的图形如图所示.显然S=2(x-x3)dx.]3.一物体沿直线以v=3t+2(t单位:s,v单位:m/s)的速度运动,则该物体在3~6s间的运动路程为( )【导学号:31062100】A.46m B.46.5mC.87mD.47mB [s=(3t+2)dt==(54+12)-=46.5(m).]4.一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F(x)相同的方向,从x=1处运动到x=3
5、处(单位:m),则力F(x)所作的功为________J.[解析] 由题意可知,力F(x)所作的功W=F(x)dx=(4x-1)dx=(2x2-x)=14J.[答案] 14[合作探究·攻重难]利用定积分求平面图形的面积问题[探究问题]观察图形,完成下列探究问题:图1721.图中阴影部分的面积能否用定积分[-(x-4)]dx表示?为什么?提示:不能.由定积分的几何意义可知,当x∈[0,8]时,被积函数y=-(x-4)表示的图形如图所示:2.若以x为积分变量,如何用定积分表示图形中阴影部分的面积?提示:S=2dx+[-(x-
6、4)]dx.3.能否以y为积分变量,用定积分表示图形中阴影部分的面积?提示:能.可表示为S=dy. (1)已知函数y=x2与y=kx(k>0)的图象所围成的阴影部分(如图173所示)的面积为,则k=________.图173(2)求由曲线y=,y=2-x,y=-x所围成的图形的面积.[解] (1)由解得或故阴影部分的面积为(kx-x2)dx==k3-k3=k3=,解得k=2.(2)画出图形,如图所示.解方程组及得交点坐标分别为(1,1),(0,0),(3,-1),所以S=dx+(2-x)-dx=dx+dx=+=++=+6
7、-×9-2+=.母题探究:1.(变条件)把本例(1)的条件变为“如图174,已知点A,点P(x0,y0)(x0>0)在曲线y=x2上,若阴影部分的面积与△OAP的面积相等”,则x0=________.图174[解] 由题意知即x0=x,解得x0=或x0=-或x0=0.∵x0>0,∴x0=.2.(变条件)把本例(1)的条件变为“曲线y=x2在点P(2,4)处的切线与曲线及x轴所围成的图形面积为S”,求S.[解] ∵y′
8、x=2=4,故曲线在P点处的切线方程为y-4=4(x-2),即y=4x-4,故所求面积S=x2dx+(x
9、2-4x+4)dx=x3+=.3.(变条件)把本例(2)的条件改为“求由曲线y2=x,y=2-x所围成的图形的面积.”[解] 由得或∴阴影部分的面积S=(2-y-y2)dy==-=.[规律方法] 求曲边梯形面积的一般步骤如下: 求变速直线运动的路程 有一动点P沿x轴运动,在时间t时的速度为v(t)=8t-2t2(速度
此文档下载收益归作者所有