《1.7.1 定积分在几何中的应用》教学案

《1.7.1 定积分在几何中的应用》教学案

ID:36137830

大小:451.50 KB

页数:2页

时间:2019-05-06

《1.7.1 定积分在几何中的应用》教学案_第1页
《1.7.1 定积分在几何中的应用》教学案_第2页
资源描述:

《《1.7.1 定积分在几何中的应用》教学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《1.7定积分的简单应用》教学案一:教学目标 知识与技能目标 1、进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、让学生深刻理解定积分的几何意义以及微积分的基本定理;3、初步掌握利用定积分求曲边梯形的几种常见题型及方法;4、体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功).过程与方法情感态度与价值观二:教学重难点  重点曲边梯形面积的求法难点 定积分求体积以及在物理中应用 三:教学过程:1、复习1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么?2、定积分的应用(一)利用定积分求

2、平面图形的面积例1.计算由两条抛物线和所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到.ABCDO解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分.巩固练习计算由曲线和所围成的图形的面积.例2.计算由直线,曲线以及x轴所围图形的面积S.分析:首先画出草图,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例1不同的是,还需把所求图形的面积分成两部分S1

3、和S2.为了确定出被积函数和积分的上、下限,需要求出直线与曲线的交点的横坐标,直线与x轴的交点.练习1、求直线与抛物线所围成的图形面积.答案:xyoy=-x2+4x-32、求由抛物线及其在点M(0,-3)和N(3,0)处的两条切线所围成的图形的面积.略解:,切线方程分别为、,则所求图形的面积为3、求曲线与曲线以及轴所围成的图形面积.略解:所求图形的面积为2、求曲边梯形面积的方法与步骤:(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值

4、的和.设曲线AB方程为,函数在区间上可导,且连续,则曲线AB的弧长为.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。