欢迎来到天天文库
浏览记录
ID:35695323
大小:37.00 KB
页数:5页
时间:2019-04-13
《人教版数学九年级上册教材分析[1]》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、---人教版数学九年级上册教材分析《义务教育课程标准实验教科书·数学》九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)的四个领域“数与代数”“空间与图形”“统计与概率”“课题学习”。本书供义务教育九年级上学期使用,全书共需约61课时,具体分配如下:第21章 一元二次方程 约9课时第22章 二次函数 约13课时第23章 旋转 约8课时第24章 圆 约17课时第25章 概率初步
2、约14课时一、教科书内容安排1、学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式”一章就来认识这种式子,探索它的性质,掌握它的运算。在这一章,首先让学生了解二次根式的概念,并掌握一些重要结论。关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是
3、由二次根式的乘除法则得到,并运用它们进行二次根式的化简。“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。2、一元二次方程学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程──一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解
4、决一些实际问题。本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,“22.2降次──解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元
5、二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。(2-------)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。(3)在介绍因式分解法时,首先通过
6、实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。3、旋转学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称
7、和中心对称图形。“23.1旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。“23.2中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。“23.3课题学习图案设计”一节让学生探索图形之
8、间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。4、圆圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。“24.1圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这
此文档下载收益归作者所有