欢迎来到天天文库
浏览记录
ID:35677023
大小:22.30 KB
页数:6页
时间:2019-04-11
《如何提高2019年高考数学第一轮复习的效率》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、b如何提高2019年高考数学第一轮复习的效率一、改进学习方法,培养良好的学习习惯 改进学习方法是一个长期性,系统积累的过程,一个人只有不断地接受新知识,不断地产生疑问,不断地总结,才能不断地提高。应通过与老师、同学平时的交流,逐步地总结出一般性的学习规律,它包括:制定计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。 在课堂上应注意
2、培养听课的好习惯。听是主要的,把老师讲的关键部分听懂,听的时候注意思考,分析问题,但是光听不记或光记不听,必然会顾此失彼,因此适当的记笔记,领会老师课上的意图和精神。在课堂、课外练习中应注意培养写作业的习惯,作业不仅要书写工整,而且还要有条理,这样可以培养逻辑能力。同时作业必须独立完成,培养一种独立思考的好习惯。 二、提高课堂效益的“四抓” 1.抓知识的形成过程 数学的概念、定义、公式、定理等都是数学的基础,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的b培养过程。一个定
3、理的证明,往往是新知识的发现过程,在掌握知识的过程中,促进了能力的发展。如反函数概念如何形成?构造性的定义给出了求反函数的方法和步骤及互为反函数其图象的对称关系。 2.抓问题的暴露 在课堂上,老师都会提问,有时还伴随着问题的讨论,对于典型问题,带有普遍性的问题必须及时解决,不能把问题遗留下来,甚至积累下来,发现问题应及时解决,遗留问题要及时解决。 3.抓解题指导 要合理选择简捷的运算途径,这不仅是迅速运算的需要,也是运算准确性的需要,运算的步骤越大,出错的可能性也就越大。因而根据问题的条件和要
4、求,合理地选择简捷的运算途径,不但是提高运算能力的关键,也是提高其它数学能力的有效途径。如给定两个集合如何构成映射,能构成多少个映射?如何构成函数,能构成多少个函数等。 4.抓数学思维方法的训练 数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的应用性,对能力的要求较高。数学能力只有在数学思想方法不断应用中才能得到培养和提高。b 三、学会数学复习的归纳总结 1.抓基础 (1)结合“边看边记,温故知新系统”
5、的填空提示,预习课本中所涉及的基本知识、公式、定义和定理,着重于自己感到的重点、难点、疑点的再学习和再认识,重视基本概念、基本理论,并强化记忆; (2)结合“落实双基,稳步提高”的练习,遇到概念解题时要对概念的内涵和外延再认识;理解定理的条件对结论的约束作用,并反问:如果没有该条件会使定理的结论发生什么变化?如三垂线定理若缺少直线在平面内将有什么结果? (3)“举一反三,触类旁通”,对典型例题师生共同赏析,在教师的指导下,注重如何把握思维的切入点,掌握各种题型的思路走向,揣摩命题者的意图,归纳全面
6、的解题方法。只有积累一定的典型习题才能保证解题方法的准确性、简捷性和完备性; (4)认真做好练习题,采用循环交替、螺旋式推进的方法,避免出现对基本知识、基本方法遗忘的现象。 2.构建知识网络结构 认识课本知识间的横向联系,了解各部分内容在高考中所占的分值、地位和难易程度,有针对性地复习、梳理重点内容,突破自己的b薄弱环节,力求从宏观上把握高中数学的知识体系,建立自己的解题方法体系和思维体系。 3.全面认识与掌握高中常用的数学思想方法 高中数学学习过程中所接触到的数学思想方法一般分为三类:第一
7、类是用于解题的具体操作性的方法,如配方法、换元法、消元法、待定系数法、判别式法、错位相减法、迭代法、割补法、特值法等;第二类则是用于指导解题的逻辑性的方法,如综合法、分析法、反证法、类比法、探索法、归纳法、解析法等;第三类则是在数学学习过程中形成的对于数学解题甚至于对于其它问题的解决都具有宏观指导意义的数学思想方法,如函数思想、方程思想、数形结合思想、分类与整合思想、化归与转化思想等。复习中要关注它们的应用,形成学以致用的习惯。 4.进行解题后的再思考 思因果 解题后,要思考在解题过程中运用了哪
8、些知识点、已知条件及它们之间的联系,还有哪些条件没有用过,结果与题意或实际生活是否相符等。这样可促使我们进行大胆探索,发现规律,从而激发创造性思维。 思规律b 解题后,要注意思考所用的方法,认真总结规律,以达到举一反三的目的,这样有利于强化知识的理解和运用,提高知识的迁移能力。 思多解 在解题中采用多种解法,不仅可以锻炼我们思维的发散性,而且可以培养我们综合运用所学知识解决问题的能力。 思变通 对于一道题不应局限于就题论题上,而要进行适当的变
此文档下载收益归作者所有